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PREFACE

-. Almost six and half years have passed since I started this research on June 16, 1981, and these
were hectic years. During this period, so many things were designed and accomplished. Even if I am

the principal investigator, I find it practically impossible to include and systematize all the important
findings and implications within a single final report, and it is my regret that so many of them have

Sto be left out. I did my best within a limited amount of time, however, with the hope that this final
report will help the reader to grasp the outline of the whole accomplishment.

There were six main objectives in the original research proposal, and they can be summarized as
5' follows.

; ..- [1] Investigation of theory and method for estimating the operating characteristics of dis-
crete item responses, which include the plausibility functions of the distractors of tie
multiple-choice test item, as well as the graded item responses of the ftjeresponse test
item, without assuming any specific mathematical form4 and withput using too many

I examinees in the whole procedure. A"

[2] Investigation of the various characteristics of the new family of models firfi~z Itiple-choice
test item, both in theory and in practice.

.,[3] Production and revision of a set of systematic procedures for applying some combina-

tions of a method and an approach for estimating 'he operating charactetistics of discrete
5, ~ item responses, by modifying and reorganizing all the computer programs written for this

purpose.

[4] Development of latent trait theory further, and include more varieties of situations.

I [51 Investigation of ways of bridging across mathematical psychology and cognitive psychology,

through latent trait theory.

[6] Systematizing theories and methods to eventually lead to a good introductory book on
latent trait theory and other publications..

Out of these objectives, Objective [11 and [4], together with Objectives [3] and [5], were most intensively
pursued. The highest productivity belongs to this part of the research. It provided us with valuable
future perspectives of research. Objective [2] was also successfully pursued. In contrast to them,
Objective [6] was more or less dropped. To compensate for it, however, some extensive research was
done concerning the three-parameter logistic model. The main reason for this was because Navy had
adopted the model for its computerized adaptive testing, and there was a necessity to pursue it.

It was my satisfaction and pleasure that Advanced Seminar on Latent Trait Theory was planned
and held during this research period, and also that I had opportunities of introducing the research at
international conferences as well as at domestic ones.

During the research period there were so many people who helped me as assistants, secretaries, etc.,
as I acknowledged in each research report. Also people of the Office of Naval Research, especially Dr.
Charles E. Davis, and the people of the ONR Atlanta Office including Mr. Thomas Bryant and Mr.

r 1
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Donald Calder, have been of great help in conducting the research. I would like to express my gratitude
to all these people.

Thanks are also due to my two assistants, Christine A. Golik and Ali Khaddouma, and secretary,
Betty Jo Allen, who helped me in preparing this final report. Appreciation is also extended to my
former assistant Philip S. Livingston who still helped me occasionally during the research period.

December 25, 1987
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I Introduction

This is the final report of the multi-year research project, entitled "Advancement of Latent Trait
Theory", which was sponsored by the Office of Naval Research in 1981 through 1987 (N00014-81-C-
0569). The first half of the research project was conducted under the above title in June, 1981 through
June, 1984. Right after this, in June, 1984, through, December, 1987, the second half of the research
continued under the title "Advancement of Latent Trait Theory H1". Since the objectives of the two
proposed research projects are parallel, i.e, those of the second half are to pursue the objectives of
the first half further and in more detail, the present final report will treat them as one long research
project, and the accomplishments of these two projects will be integrated and systemized together.
These accomplisments include those which have already been published as ONR research reports as
well as those still in progress, which will be published in later years as part of more comprehensive
research results.

The rest of this chapter will describe papers published or presented during the research period, and
related events. The contents of the research accomplishments will be summarized and systematized,
and will be described in the succeeding chapters.

[I.1] Research Reports

The following are the ONR research reports that have been published in the present research project.

(1) Information loss caused by noise in models for dichotomous items. Office of Naval Research
Report 82-1, 1982.

(2) Effect of Noise in the Three-Parameter Logistic Model. Office of Naval Research Report
82-2, 1982.

(3) A Latent Trait Model for Differential Strategies in Cognitive Processes. Office of Naval
Research Report 83-1, 1983.

(4) Information functions for the general model developed for differential strategies in cognitive
processes. Office of Naval Research Report 83-2.

(5) A general model for the homogeneous case of the continuous response. Office of Naval
Research Report 83-3, 1983.

(6) Plausibility functions of Iowa Vocabulary Test items estimated by the Simple Sum Proce-
dure of the Conditional P.D.F. Approach. Office of Naval Research Report 84-1, 1984.

(7) Comparison of the estimated item parameters of Shiba's Word/Phrase Comprehension
Tests obtained by LOGIST 5 and those by the tetrachoric method. Office of Naval Research
Report 84-2, 1984.

(8) Results of item parameter estimation using Logist 5 on simulated data. Office of Naval
Research Report 84-3, 1984.

(9) Bias function of the maximum likelihood estimate of ability for discrete item responses.
Office of Naval Research Report 87-1, 1987.

(10) Final Report: Advancement of latent trait theory. Office of Naval Research Final Report,
1988.

L1
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%€ [1.2] Advanced Seminar on Latent Trait Theory

As was proposed in the present research, advanced Seminar on Latent TraiL Theory was held at the
ee  Sheraton Gatlinburg Hotel, Gatlinburg, Tennessee, for four days on March 30 through April 2, 1982.

Lectures were given to approximately forty researchers and graduate students from all over the
country, with the principal investigator as the sole speaker. The contents of the lectures were taken,
mainly, from her work of the past five years on various topics in Latent Trait Theory, including more
general topics such as the method of moments as the least squares solution for fitting polynomials, etc.
The topics and contents of this Advanced Seminar are given in appendix A.

The computer package programs were also introduced to the participants of the seminar. These
seven package programs are as the following.

(1) TAU TRANSFORMATION: The process of transforming the original latent trait 0 to
r , which provides the Old Test with a constant amount of test information. Old Test is

4 a set of test items whose operating characteristics are known and in this case they follow
the normal ogive model. The operating characteristics of "unknown" test items are to be
estimated, depending partially upon the information provided by the Old Test.

(2) MLE THETA: The process of obtaining the maximum likelihood estimate of 0 for each
individual examinee from his or her response pattern on the Old Test.

(3) CONDITIONAL MOMENTS MLE: The process of estimating the conditional moments
of r , given its maximum likelihood estimate f , which is transformed from 0 , i.e., the
maximum likelihood estimate of 6 . It also includes in the process the approximation of
the density function of f using the method of moments to fit a polynomial to the set of
observations.

(4) SIMPLE/WEIGHTED SUM NT: Simple Sum Procedure and Weighted Sum Procedure of
the Conditional P.D.F. Approach combined either with the Normal Approach Method or
with the Two-Parameter Beta Method, to produce the estimated operating characteristics
of the discrete item responses of the "unknown" test items.

(5) PROPORTIONED SUM NT: Proportioned Sum Procedure of the Conditional P.D.F. Ap-
proach combined either with the Normal Approach Method or with the Two-Parameter
Beta Method, to produce the estimated operating characteristics of the discrete item re-
sponses of the "unknown" test items.

(6) CONDITIONAL MOMENTS SUBGROUP: The process of estimating the conditional mo-
ments of r , given its maximum likelihood estimate f , which is transformed from 6

i.e., the maximum likelihood estimate of 0 , for each discrete item response subgroup
of each "unknown" test item. It also includes the approximation of the density function
of for each subgroup using the method of moments to fit a polynomial to the set of
observations.

(7) BIVARIATE P.D.F. NT: Bivariate P.D.F. Approach combined either with the Normal
Approach Method or with the Two-Parameter Beta Method, to produce the operating
characteristics of the discrete item responses of the "unknown" test items.

Judging from the participants' reactions during and after the Seminar, it is believed that the Seminar
gave them a good grasp of the new theoretical and methodological developments made by the principal
investigator, i.e., an accomplishment toward the goal of the present research, Advancement of Latent
Trait Theory.

2



[1.3] Invited Conference Addresses

During this period, there were two invited conference paper presentations and one special lecture
introducing some of the accomplishments of the principal investigator's research. They are as follows:

(1) Some methods and approaches of estimating the operating characteristics of discrete item
responses. Dr. Frederic M. Lord's Festchrift Conference to Celebrate His Seventieth Birth-
day, Educational Testing Service, 1982, Princeton, New Jersey, U. S. A.

(2) Development and application of methods for estimating operating characteristics of dis-
crete item responses without assuming any mathematical form. 1982 Item Response The-
ory and Computerized Adaptive Conference, University of Minnesota, 1982, Minneapolis,
Minnesota, U. S. A.

(3) Overview of latent trait models. 1987 Annual Meeting of Behaviormetric Society of Japan,
Kyushu University, 1987, Fukuoka, Japan.

At the same conference where the principal investigator presented the paper described in (2), she also
served as the discussant to Dr. Roderick P. McDonald's paper, "Unidimensional and multidimensional

models for item response theory."

The address described as (3) in the above list was a one hour special lecture overviewing latent
trait models. There were more than two hundred Japanese researchers in behaviormetrics among the
audience. The summary of the paper is given as Appendix B of this report.

[1.41 Paper Presentations at National and International Conferences

In addition to the three invited papers which were listed in the preceding section, there were other
paper presentations at national and international conferences introducing the principal investigator's
work. They include ONR contractors' meetings, and are listed below.

(1) Model Validation, Estimation of Plausibility Functions, Models for Cognitive Processes,
and Effect of Noise in the Three-Parameter Logistic Model. ONR Conference on Model-
Based Psychological Measurement, 1983, University of Illinois, Champaign, Illinois, U. S.
A.

(2) A Latent Trait Model for Differential Strategies. ONR Conference on Action, Attention
and Individual Differences in Information Processing, 1984, Haskins Laboratories, New
Haven, Connecticut, U. S. A.

(3) Specification of the Information Provided by Distractors of the Multiple-Choice Test Item
and Efficient Ability Estimation. American Educational Research Association Meeting,
New Orleans, 1984. U. S. A.

(4) Efficient Use of Distractors in Ability Estimation with the Multiple-Choice Test Item.
American Educational Research Association Meeting, New Orleans, 1984. (Coauthorship
with Paul S. Changas) U. S. A.

-p

(5) An Application of Latent Trait Theory in Analyzing the Field Test Results of a Mathematics
Proficiency Test. American Educational Research Association Meeting, New Orleans,
1984. (Coauthorship with Megumi Asako and Allen Knight) U. S. A.

V. 3



(6) Further Investigation of the Estimation of the Item Character-stic Function and the Plau-
sibility Functions of the Multiple-Choice Test Item. ONR Conference on Model Based
Measurement, 1984, Educational Testing Service, Princeton, New Jersey, U. S. A.

(7) A Latent Trait Model When the Item Score Distribution Is Partly Continuous and Partly
Discrete. ONR Conference on Model-Based Psychological Measurement, 1984, Educational

Testing Service, Princeton, New Jersey, U. S. A.

(8) Latent Trait Models Dealing with Continuous Data. American Educational Research As-
sociation Meeting, Chicago, 1985. U. S. A.

(9) A Content-Based Investigation of Informative Distractors for Multiple-Choice Items of the
Iowa Tests of Basic Skills. American Educational Research Association Meeting, Chicago,
1985. U. S. A. (Coauthorship with Paul S. Changas)

(10) Expansion of the General Model for the Homogeneous Case of the Continuous Response
Level with a Partly Continuous and Partly Discrete Item Score Distribution in the Frame-
work of Latent Trait Theory. Psychometric Society 50th Anniversary Meeting, 1985, Van-
derbilt University, Nashville, Tennessee, U. S. A.

- (11) Latent trait t'eory as applications of stochastic processes. Fifteenth Conference on Stochas-
tic Processes and Their Applications, 1985, under the auspices of the Committee for Con-
ferences on Stochastic Processes of the Bernoulli Society. Nagoya University, Nagoya,
Japan.

(12) Effect of the guessing parameter on the estimation of the item discrimination and diffi-
. PI ,culty parameters when three-parameter logistic model is assumed. American Educational

Research Association Meeting, San Francisco, California, 1986, U. S. A.

% (13) Content-based observation of informative distractors, bias function of the maximum like-
lihood estimate of the latent trait when item responses are discrete, etc. ONR Conference
on Model-Based Measurement, Gatlinburg, Tennessee, 1986, U. S. A.

(14) Bias function of the maximum likelihood estimate of the latent trait when item responses
are discrete. American Educational Research Association Meeting, Washington, D. C.,
1987, U. S. A.

(15) Striving for the refinement of the conditional P.D.F. approach for estimating the operat-
K, ing characteristics of discrete responses. ONR Conference on Model-B&sed Measurement,

Columbia, South Carolina, 1987, U. S. A.

(16) A robust method of on-line calibration. American Educational Research Association Meet-
ing, New Orleans, 1988, U. S. A. (Proposed and accepted.)

Out of these paper presentations, the one listed as (11) was made at the international conference
held in Nagoya, Japan. Approximately three hundred and sixty researchers, the majority of whom
are mathematicians, participated from twenty-five different countries. The principal investigator also
chaired one of the sessions by the request of the conference organizer, Professor Takeyuki Hida of Nagoya
University.

4-4
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[1.5] Book Chapters

Some of the principal investigator's works were published as book chapters in two books during this
period. They are as follows:

(1) Some methods and approaches of estimating the operating characteristics of discrete item
responses. In H. Wainer and S. Messick (Ed.), Principals of Modern Psychological Measure-
ment: A Festschrift for Frederic M. Lord, pages 159-182. New Jersey: Lawrence Erlbaum,

P1983. New York: Academic Press, 1983.

(2) The constant information model on the dichotomous response level. In David J. Weiss
(Ed.) New Horizons in Testing, pages 287-308.

[1.6] Other Events

The principal investigator hosted an annual ONR Conference on Model- Based Measurement in 1986,
on April 27 through 30, at Park Vista Hotel, Gatlinburg, Tennessee. Approximately forty researchers
participated in the conference.

She also gave a seminar on "the On-Line Item Calibration Using Nonparametric Approaches," in
July, 1987, at Educational Testing Service.

5
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II Theory and Methods for Estimating the Operating
Characteristics of Discrete Itein Responses

This part of research aimed at further developments and modifications of the methods and approaches

developed by the principal investigator. During the previous four years, 1977 through 1981, the principal
investigator had been engaged in the research sponsored by the Office of Naval Research, under the
title, "Efficient Methods of Estimating the Operating Characteristics of Item Response Categories and
Challenge to a New Model for the Multiple-Choice Item." One of the main outcomes of the research was
various methods and approaches for the efficient estimation of the operating characteristics of discrete
item responses. They are listed in the summary of the principal investigator's special lecture given
at Fukuoka, Japan (Appendix B, page 4), and the computer package programs for these methods are
described in [1.21.

Two important features of the principal investigator's approach are the following.

(1) It does not assume any specific mathematical form for the operating characteristic, or the
conditional probability, given the latent trait, with which the individual subject gives a
specific discrete response.

(2) It does not require a large sample size of individual subjects, i.e., no more than several
thousand and sometimes even down to several hundred.

In the present research, computer programs written in the previous research were tested with
empirical and simulated data, revised and improved, used for empirical data (cf. Chapter VII), revised
again, and so forth. Many variations of these programs were produced. Among others, a series of
variations for computerized adaptive testing and on-line item calibration was written. A new method
called Lognormal Approach Method was proposed and tested. The bias function of the maximum likeli-
hood estimate was conceived and proposed (cf. Chapter III) partly from the necessity for increasing the
accuracy in the operating characteristic estimation, as well as for the general purpose of the advancement
of latent trait theory.

[11.1] Conditional P.D.F. Approach Combined with the Normal Approach
Method

Out of these different approaches, Bivariate P.D.F. Approach may be the most orthodox one. It has
its disadvantages in comparison with the conditional P.D.F. Approach, however, in the sense that: 1) it
requires a larger sample size of individual subjects, and 2) its CPU time is substantially greater because

* of the fact that the estimation has to be done for one item at a time. On the other hand, in spite of
the additional approximation involved in the Conditional P.D.F. Approach, in the present research the
results of this approach proved to be quite accurate in many cases.

Let 6 be the latent trait, or "ability", which assumes any real number. Let r be the transformed
ability which is strictly increasing in 0. In the Conditional P.D.F. Approach, the conditional density,
0(r j r.) , of r , given its maximum likelihood estimate f. of the subject s , is approximated by
some specified probability density function. In so doing, first we estimate the conditional moments of
r , given r, , and then use the method of moments for fitting a specific probability density function.

h.. Three methods, i.e., Pearson System Method, Two-Parameter Beta Method and Normal Approach
Method, have been proposed and tested. Out of these three methods, Pearson System Method provides
us with more varieties of "shapes" for the conditional density, including asymmetric ones. Thus it is
theoretically more adequate than the other two, i.e., Normal Approach Method and Two-Parameter
Beta Method. These two methods have their own advantage, however, for they avoid the use of the third

a6
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and fourth moments of the conditional distribution of the transformed ability, which are less accurately
estimated than the first and second moments.

In our investigation, Normal Approach Method combined either with the Simple Sum Procedure
of the Conditional P.D.F. Approach or with the Bivariate P.D.F. Approach was mainly used in the
estimation of plausibility functions and in the model validation. The results suggest that, with a sample
size as small as several hundred, while there are no visible differences between the two in estimating
the item characteristic functions of dichotomous test items, the first combination seems to be better

than the second for the estimation of the plausibility functions of distractors and of the operating
characteristics of graded item responses. The general success in the use of the Normal Approach
Method depends upon the fact that the conditional distribution is indeed approximately normal if the
transformed ability distribution is normal, and is approximately truncated normal if the distribution is

rectangular, with the truncation negligibly small for the wide range of the maximum likelihood estimate
of the transformed ability.

For the reasons described above, after these investigations, Conditional P.D.F. Approach combined
W- with the Normal Approach Method was most frequently used in the present research. Among others,

application of this combination to the estimation of the plausibility functions of the wrong alternative
answers of the Iowa Tests of Basic Skills items turned out to be very successtul. It will be introduced
in Chapter VII.

*: [11.2] Lognormal Approach Method

As was pointed out in the preceding section, the estimation of the conditional moment of ability, given
its maximum likelihood estimate, becomes less accurate as the degree of the moment advances. Thus
Pearson System Method must use fairly inaccurately estimated fourth conditional moments, in addition
to the better estimated first through third moments. On the other hand, although Normal Approach
Methods has an advantage of solely using fairly accurately estimated first and second moments, it has a

* ." disadvantage of forcing the estimated conditional density function into symmetry. This forced symmetry
could be inappropriate when the population ability distribution departs from normality.

For this reason, it will be a logical direction of research to pursue another method which uses the
first, second and third conditional moments, allowing asymmetry to the conditional density function
of ability without using the fourth moment. Thus Lognormal Approach Method was developed and
proposed. Although it has not been published in a research report yet, it was introduced at the 1987
ONR Conference on Model-Based Measurement (cf. [1.4.15]).

Let ju4 denote the r-th conditional moment of r about the origin, given f, , and js, be that of
r about the mean, respectively, i.e.

p..

r." (2.1) 14 E(Tr I ).)

and

(2.2) u,. E[(r -M)"i

In the Lognormal Approach Method, we need the estimates of 14 , 102 and 03 for each f. Let
6 denote the skewness index such that

7
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(2.3) 
6 = 3A2 3/2

If 6 0- , then the conditional density 0(r I f.) is approximately symmetric, and it will be approximated
by the normal density function with the estimates A' and 2 / 2 as its two parameters, just as we do

in the Normal Approach Method.

When 6 > 0 , the estimated conditional density, (r I f.) , is given by

(2.4) (r I f.) - (r - &)-'(2r)-1/2i-i ezp[-{log(¢ - &) - ft2/2-2,

where the estimated three parameters, & , ft and 5 , are obtained through the relationships,

(2.5) /I = fLC ( I f.) d,

= f (e'Y+A' + Co)0*(Y)dT dy

= ep{ + (1/2)_21 + ,

= V2 w(W -1)

and

S.

(27) p~= (~p)3(Tf.d

9 8

.NN..

= 9 '9. ~ , (,,_,.)2 (. d ( --9)



exp{30 + (9/2)'2} - 3 exp{3f + (5/2)'y21 + 2 ezp{3# + (3/2)}

= V 3 W3/2(W- 1)2 (W + 2)

where

(2.8) W {,2}

and

(2.9) V exp(p)

A similar but somewhat different procedure is taken when 6 < 0 . In this case, the approximated

conditional density function is provided by

(2.10) (r I f.) = (a - r) 1 (2ir-" 2 T- ezp[-{log(& - ) - 2

where the estimation of the three parameters is conducted through the relationships

* (2.11) O= r(rIf.dr
o o C( ' + # O - Y r d

,72 -eXP{fl+ (1/2) -21 + C ,

(2.12) I.2 - (r1 - Al)( .I) dr
KAO

r= _ ,)20(rI f.) - (a -,)

= eP{2# + 2,f2} - cxp{2# + 72

2 vW (W -1)

9



v.

and

(2.13) IA3 ( -A)30(, I f.) dr

3f(r - )(a - p')24(r I .) d + 3- a)) 3((r f.) dr
(r- - , a-I'A' . r+I

= -exp{3fi + (9/2)'y2} + 3 ezp{3fi + (5/2)_Y2} - 2 exp(3f + (3/2)-Y2}

= M zW3/(1) 2(W +2)

The actual procedure starts from obtaining the estimate of 6 from (2.3), and then that of w through
" the relationship

(2.14) 62 = (w-1)(w +2) 2

Then we proceed to estimate the two parameters -y and f concurrently through

(2.15) -Y = [logW]112

(2.16) V = -- 1/2 W-1/2(W - 1)-1/2

and

(2.17) f = log ,

and finally we obtain the estimate of a through

( ) + exp{ + (1/2),y2) 6 <0
(2.18) 5

A'j - eXp{ + (1/2) 2} 6 > 0

10



We tested this method implemented in the Conditional P.D.F. Approach with some simulated data,
and the results turned out to be at least as good as those obtained by the Normal Approach Method.
Figure 2-1 illustrates six examples of the estimated conditional density of r , given f. , in comparision
with the true density function and the one estimated by the normal approach method. We can see that
the improvement is substantial when the true curve is either negatively or positively skewed. This is
happening when f, is much greater or much less than the mean of f.

True appreciation of the method will be reached, however, when it is tested against data having
unconditional distributions of r which are substantially deviated from normality and from uniformity.
This will be done in a separate research in the near future.

[11.3] Discussion

This part of research included a substantial amount of computer programming not only for making
Lognormal Approach Method accessible but also for modifying and improving the already written
package programs. Another orientation was taken to adjust these methods and approaches to the
computerized adaptive testing. This is still in the progress, and will be reported in a separate research
in the future.

There are many other developments and findings which are not given here. The reader who is
interested is directed to the separate research reports and/or to personal conversations with the principal

investigator.
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III Bias Function of the Maximum Likelihood Estimate of
Ability in the General Discrete Response Case

In those theory and methods developed for estimating the operating characteristics of discrete item
responses, which were described in the preceding chapter, the maximum likelihood estimate 0 of ability
0 , and also f of the transformed ability r play important roles. Since in these methods the asymptotic
unbiasedness and normality of the conditional distribution of the maximum likelihood estimate, given
the true parameter, is used as approximation, it is of our serious concern whether indeed the maximum
likelihood estimate is practically conditionally unbiased or not with actual data for the interval of ability
of interest. For this reason and for many others, in the second half of the research period, the bias
function of the maximum likelihood estimate of ability was investigated in the general case where item
responses are discrete. In this chapter, the outline of its main outcomes will be described. For details
and more information, see [I.1.91.

[III.1] Background

Lord has proposed and discussed a bias function of the maximum likelihood estimate in the context
of the three-parameter logistic model (cf. Lord, 1983). In so doing, he used Taylor's expansion of the
likelihood equation and proceeded from there, obtained an equation which includes the conditional
expectation of the discrepancy between the maximum likelihood estimate and the true ability, and
ignored all terms of orders higher than n 1 , where n indicated the number of items. Let P,(O) be
the item characteristic function or item response function in the three-parameter logistic model, which
is given by,

(3.1) P(O) = c, + (1 - c)(I1 + ezp{-Da,(d - bg))) - '

where ag , bg ,and c. are the item discrimination, difficulty, and guessing parameters, and D is a
scaling factor, which is set equal to 1.7 when the logistic model is used as a substitute for the normal
ogive model. Lord's bias function B(0) can be written as

n 1(3.2) B(O) = D[I(6)1-2 ralg(O)[ dg(O)- -I2

g=1

where

(3.3) 11() - 11 + exp{-Da,(O - b)}]- ,

and 1r(0) and 1() are the item information function and the test information function, respectively,
which are given by

(3.4) Ig(9) - [P;(0)j2 [Pg(_){1 - P,(0)] - l

and
n

(3.5) 1(0) E 1 (0)
g=1

,.',%
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with P,(6) indicating the first derivative of P0 (6) with respect to 0 . The former of these two
formulae can be given as a special case of the item information function (Samejima, 1969, 1972), which
is defined for the general case of discrete responses. (Incidentally, in Lord's paper, BI(j) is used
for this bias function. This is not appropriate, however, since it is a function of 0 itself, not of its
maximum likelihood estimate j .)

[111.2] Rationale

A similar logic can be adopted for the general case, in which item responses are simply discrete. We
assume that there are a finite or an enumerable number of discrete responses kg 's as possible responses
to item g. Thus for the set of n items, we can write for the response pattern V

(3.6) V' = (k,k 2 ,...,kg,...,k,)

• ,We assume that the operating characteristic Pk, (6) is three-times differentiable with respect to 0
By virtue of local independence, we can write for the likelihood function

(3.7) Lv(0) = Pv(0) = 1 Pk,(0)

k9 EV

Thus the likelihood equation is given by

(3.8) Iog Lv (0) = Z l log Pk,() 0

kEV

We define r.k,(o) such that

(3.9) r,,, (o) = -log Pk, (6)

for s = 1,2,... We notice, in particular, that

(3.10) r,,,(o) = P,(o)[P,(o)j-1  = Ak,(O)

where Ak (0) is the basic function (Samejima, 1969). Let rsv(0) be defined by

(3.11) r.v(o) = E rk,(o)
kEV

V.' for s = 1,2,... For a fixed value of 0 we can write by Taylor's formula

(3.12) riv(j.) = rv(o) + ( v - o)r2v (0) + (1/2)(§v - o)2 r3 V (0)

+ (1/6)(V -)
3 r4 (6) + (1/24)( v 0) 4 rs ) 0
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Swhere is some value between 0 and OV

..r Since we have

(3.13) Pk, (0) = 1
k'

we obtain

(3.14) t P,,() = 0

for t = 1, 2,... Equation (3.14) will be helpful in following the mathematical derivations which are
needed in obtaining the bias function. Let y.,(B) be the conditional expectation of rkg(O) , given
0 , which can be written as

(3.15) 'l.(0) = Elr. ,(o) I1] = Zr..,(o) Pk.,(o)
kg

In particular, we have from (3.10) and (3.14)

(3.16) '1lg = P",() = 0
kg

We further define -y, (0), ejk (0) and e.v () such that

(3.17) -y.(0) =(1/n) E'7,,

for s=1,2,...

(3.18) Ckg(0) = rk, (0) - -9(0)

and

(3.19) e.v(0) = (1/n) E CA, (o)
kgEV

respectively. For the conditional expectation of e.v (0) , given 0 , we obtain

(3.20) E[ v(0) 61 Z ,, (0) Pv(0) = -y.(0) - -y(O) = 0
V

With these definitions of -1,(0) and eWv(0) and from (3.12) we have

17



(3.21) IV (0) + (jV - 0)[-Y2(0) + C2V (0)] + (1/2)(jv - 0)'j2 '3(0) + E30()]

+ (I16)(
9
v - 013[-Y4 (0) + fvU(0)] + (i/24)( v - 0)4 rs () = o

and proceeding from here by taking the conditional expectation of each term with respect to V , given
9 , and ignoring all terms whose orders are higher than n - , we obtain

(3.22) E[EIV (0) 101 + -12 (0)E[9v - 0 1] + E[(v - )E2v (0) 101

+ (1/2)Y3 (0)E[(v - 0)2 101 0

It is obvious from (3.20) that the first term on the left hand side of (3.22) disappears. As for the fourth

'S." and last term in (3.22) we can use the asymtotic variance of the distribution of the maximum likelihood
estimate as the approximation to its last factor, i.e.,

(3.23) E[(v _ 9)2 90]8 - [(8)I

Thus all that is left to do is to evaluate the third term on the left hand side of (3.22) in the general
framework. From this we obtain

(3.24) E[(&v - 0).E.. (9) 10] = (1/,)[I()1- IF-Ak,()IPL'() - Ak,(9)Pk,(6)
g=1 kg

where P,' (9) and Pk' (0) indicate the first and second derivatives of Pk,(9) , with respect to 0
respectivefy. Substituting (3.15), (3.17), (3.23) and (3.24) into (3.22) and rearranging, we obtain for
the bias function of the maximum likelihood estimate

(3.25) B(9) E] v - 191 = -(1/2)[)I(JA 2 ,,,Ak ()Pk (0)
g= 1 k,

, = -(1/2)[( 1- P k ,(0) P ko,(0)[Pk,(0)] -1

g=1 kg

On the graded response level where item score z0 assumes successive integers, 0 through mg , each
k9 in (3.25) must be replaced by xg . On the dichotomous response level, it can be reduced to the
form

(3.26) B (O) - E ]9v - I 10 = (- 1/2)II(9)V -  j I[()P '( 9)_P2(0)]'

g=l
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with P,'(0) indicating the second derivative of P,(O) with respect to 6. This includes Lord's bias
function in the three-parameter logistic model as a special case. In the normal ogive model, the item
characteristic function is given by

~a(0-bg)
(3.27) P9(0) = (2r) - 1 / 2  

e-0/2 du
f-00

where a. and b. are the item discrimination and difficulty parameters, respectively. From (3.27), we
can write for the first and second derivatives of P(O) with respect to 0

(3.28) J

and

N

(3.29) -a ( -bJ)1%(6)

respectively. Substituting (3.28) and (3.29) into (3.26) and rearranging, we obtain for the bias function

.e,' n

(3.30) B(O) = (1/2)I(c 2 E a -bg)Ig(0)
g=1

In the (two-parameter) logistic model, the item characteristic function is given by

'' (3.31) P'(0) = [ . + e-Da (O-bg) -I

which is the same as 1g(0) in (3.3). The bias function is the same as (3.2) ,therefore, by obtaining
Iv (0) and 1(0) by setting cg = 0.

[111.3] Bias Function and Amount of Test Information

We shall introduce some examples now. In developing nonparametric approaches and methods of
estimating the operating characteristics, or the conditional probabilities, given ability 0 , which are

V assigned to separate discrete item responses, a set of simulated data has been used for testing these
approaches and methods, in which 35 graded test items following the normal ogive model with three

item score categories each are hypothesized as the Old Test (cf. Samejima, 1977, 1981). The square
root of the test information function of this Old Test is shown as the upper solid curve in Figure 3-1.iThe bias function, which was computed through (3.25), is also shown in the same figure as the lower
solid curve. We can see in this figure that for the interval of 6 covering (-4,4) the bias of the
maximum likelihood estimate is practically zero, i.e., the MLE of ability is practically unbiased for this

4No range of 6 . Thus, one of the necessary conditions to justify the use of the asymptotic normality as the
approximation for the conditional distribution of MLE, given 6 , is satisfied.

We notice that for the range of 6 , (-3, 3) , the square root of the test information function of
this Old Test assumes approximately a constant value, 4.65 , and we have already seen that for the
wider range of 6 the bias function assumes, practically, zero. It is interesting to note that the bias
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starts showing up both positively and negatively when the square root of test information drops lower

than a critical value, which is approximately 3.2 , or the test information function drops lower than

approximately 10. In order to pursue this relationship, two more sets of these two functions are also

shown by dashed and dotted curves in Figure 3-1. These two sets were created by redichotomising the

graded items of the Old Test, using the first and second sets of the difficulty parameters, respectively.
We can see that for the wide range of 0 the square root of the test information is substantially less

than that of the original Old Test, which is the natural consequence of redichotomizing the items. We

notice that for each of these two, the square root of the test information function is barely greater than

3.2 for a wide range of 0 , and the bias is practically nil. Again the bias appears both positively and

negatively when the square root of the test information function drops lower than approximately 3.2.
If we tolerate the biases of ±0.1 , then the critical value of the square root of test information will

approximately be 2.75, or that of the test information function approximately 7.5. When the square

root of test information drops less than 2.0, the bias turns out to be substantially large.

Figure 3-2 presents similar results by dashed and dotted curves, respectively, which are based upon
two sets of empirical data. The first set is the results of the Level 11 Vocabulary Subtest of 43 items of

V'-. the Iowa Tests of Basic Skills collected for 2,356 school children of approximately age eleven, and the

second set is those of the Test J1 of Shiba's Word/Phrase Comprehension Tests of 55 items collected
for 2,259 junior high school students (cf. Samejima, 1981). Both sets of operating characteristics are

estimated by assuming the normal ogive model. In these two cases, the critical value of square root
of test information when we tolerate biases of ±0.1 turned out to be less, i.e., approximately 1.75 ,
or the critical value of the test information function is approximately 3.0 . These differences seem to

have something to do with the fact that in the Old Test there are only 35 test items with the average
discrimination parameter as high as 1.70 , while there are as many as 43 and 55 items in the Iowa

Subtest and Shiba's J1 Test with the average values of discrimination parameters 0.601 and 0.538
respectively for tha Iowa Level 11 Vocabulary subtest.

We can see in this figure that the bias is practically nil for tha range of 0 , (-2, 2) , where

approximately 95 percent of the subjects are located. This interval is even wider for Shiba's test J.
This fact proves exellence of the tests in this aspect. These two tests were more thoroughly analysed in
the present research project, and these results will be obtained in chapters VII and VIII, respectively.

[111.4] Increment in Bias Caused by Random Guessing

The two graphs in Figure 3-3 show the increment in bias caused by the guessing parameters for the

Iowa Level 11 Vocabulary Subtest and Shiba's J1 Test, respectively. In each graph, the solid curve

indicates the bias function based upon the logistic model, while the dashed and dotted curves are the
bias functions based upon the three-parameter logistic model, with the guessing parameters, 0.20

and 0.25 , respectively, added to the same discrimination and difficulty parameters of each item. It
is obvious that a substantial increment in bias is caused by the addition of the guessing parameter,
especially on the lower levels of ability.

[111.5] Adaptive Testing

Observations made in the previous sections provide us with ideas how things go in adaptive testing.

First of all, in order to reach the practical unbiasedness in estimating the individual subject's ability in

adaptive testing, we need to make sure that a sufficient amount of test information has been reached for
each individual subject, before terminating the presentation of new items. We can control it easily, if we

use the amount of test information as the criterion for the termination of presenting new items, or as the
"stopping rule". If the items follow the normal ogive or logistic model in the adaptive testing situation,

for subjects of intermediate ability levels it is likely that on the initial stage the item difficulty parameters
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fluctuate both negatively and positively around the subject's true ability level, and consequently, the
biases of negative and positive directions are cancelled out, since an item pool usually has plenty of
items of intermediate difficulties. In such a case we do not have to worry too much about the influence
of the initial items on the eventual bias of the ability estimate. When the maximum likelihood estimate

has started being more or less stabilized, chances are slim that the additional item causes a substantial
bias, provided that the program is written in such a way that an item of a large amount of information
at the current estimated ability level will be presented next, and that the item pool has a sufficient
number of items whose difficulty levels are arround the subject's true ability level. There is greater

9possibility that the examinee obtains a biased ability estimate if his ability level is close to either end
of the configuration of difficulty parameters, since biases caused by the initially presented items are not
likely to cancel themselves out, and, moreover, there may not be a sufficient number of items whose
difficulty levels are close to his ability level.

If the item pool consists of items following the three-parameter normal ogive or logistic model, the
effect of random guessing on the amount of bias can be substantial, especially on the lower levels of
ability. In such a case, it is imperative to include many easy items in the item pool.

In any case, the bias function can be a good indicator in evaluating the item pool, if we use it
wisely and effectively. Those results that were described in previous sections will give us information
and suggestions as to how to improve an existing item pool.

[111.6] Discussion

It has been observed that: 1) the amount of bias of the maximum likelihood estimate increases with
the decrease of the amount of test information, and there seems to be a relatively simple relationship
between the two; 2) on the other hand, it seems that the configuration of the discrimination and difficulty
parameters within a test and the number of items affect the amount of bias; and 3) random guessing
increases the amount of bias especially on the lower levels of ability. A usefulness of the bias function
is seen in developing theory and methodologies using the normal approximation of the conditional

- distribution of the MLE of ability, given 0 , as we have seen in the nonparametric estimation of the
operating characteristics of discrete item responses.

There are many other developments and observations concerning the MLE bias function that are
not presented here. Among others, they include comparison of different models, the effect of the
discrimination parameters on the bias function, the effect of the number of items on the bias function,
the bias function after the scale was transformed including the general case of discrete responses and

I' the equivalent item case on the dichotomous response level, and the effect of the scale transformation
to generate a constant test information.
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IV Constancy in Item Information and the Information Loss
Caused by Noise on the Dichotomous Response Level

Researchers tend to consider that dichotomous items with high discrimination parameters are "good"
items, and those with low discrimination parameters are "bad" ones. This is not necessarily true,
however. If, for example, in our item pool of binary test items most items are of similar levels of
difficulty, items with low discrimination parameters will be more informative and useful for testing
individual subjects on the levels of latent trait, or "ability", which substantially depart from these
levels in either positive or negative direction.

The principal investigator has pointed out (Samejima, 1979) that there is a constancy in the amount
of information given by items regardless of the values of their discrimination parameters, provided that

Sthese items have the same type of item characteristic functions. This was discussed in the unidimensional
latent space. The constancy exists in the square root of the item information function integrated for the
entire range of ability 0 .Among others, it has been shown that, if the item characteristic function is
strictly increasing in 0 with zero and unity as its lower and upper asymptote, respectively, as is the case
with the normal ogive model, logistic model, linear model, etc., this total area under the square root of
the item information function equals 7r , regardless of mathematical formulae representing particular
models. It has also been shown that, if the model has a lower asymptote greater than zero, as is the
case with the three-parameter normal ogive and logistic models, etc., the constancy still exists, but the
area decreases as the lower asymptote increases. It will be worthwhile to investigate this constancy of

!.Z" item information across different models and item parameters in a more general framework, and also
to investigate the amount of information loss caused by noise, such as the guessing parameter in the
three-parameter normal ogive or logistic model, etc. One reason for the necessity of such a research
is the fact that the three-parameter logistic model has been applied by so many researchers without a
deep enough understanding of the model. Another reason is that we need to know more about different
types of models in order to use them for different purposes of research. One such example of necessities
will be given in modeling differential strategies in cognitive processes, which will be outlined in chapter
V.

The principal investigator pursued these topics described above and in this chapter its summary will
be presented. For further detail and more information, see [I.1.11 and [1.1.2].

[IV.l] Four Types of Models for Dichotomous Test Items

V. We assume that the item characteristic function, Pg(O) , is strictly increasing in ability 0, for the
interval

(4.1) < 0 < W

where _ and 0 may be negative and positive infinities, respectively, or finite numbers. This interval,
(1, 0) , can either be the whole range of ability 6 which is common for all items, or a subinterval
specified for a particular item. Let c., and Cg2 denote the lower and upper asymptotes of the item
characteristic function, where

* (4.2) 0 < cg1 < cg < 1
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Four types of models, Types A, B, C and D, are considered in this research, which are represented
by the general formula for the item characteristic function P,(O) such that

0

"(4.3) Pg(e) =CI+ (Cg2 -Cg,)PgO

where 4'g(e) is a strictly increasing function of 9 for the interval (_,e) , with zero and unity as its
lower and upper asymptotes, respectively. These four types of models are distinguished from each other
by the values of cg, and cg2 which are the listed below.

TypeA: O=c.1 < Cg2 =

Type B: 0 < ci <Cg2 = 1

Type C: 0=cgl <C 92<I

Type D: 0< cga < C2 <1

" Figure 4-1 presents a set of examples of these four types where ikg(O) is the item characteristic function
.of the normal ogive model, which is given by

(4.4) Tg(O) = (2'r)1/2 f 9  e,, 2 /2 du

with the parameters, ag = 1.0 and bg = 0.0. For Types B and D, we have cgl = 0.2 , and, for Types
C and D, cg2 = 0.8 . We notice that the example for Type A which is given in Figure 4-1 is the normal
ogive model itself, and that for Type B is the three-parameter normal ogive model. We have no specific
models of Types C and D which are commonly used yet. As will be pointed out in Chapter V, however,
models of Type C, in particular, have important roles in dealing with items of multi-correct answers
and in modeling differential strategies in cognitive processes. Investigating the characteristics of this
type of models will be just as important, therefore, for further advancement of latent trait theory.

[IV.2] Information Loss

Let Q denote the total information, which is defined by

(4.5) Q = 0 [Ig()11/ 2 dO

where Ig(9) is the item information function for which we can write

(4.6) Il(O) =

Following a sequence of logics and mathematics, we obtain for the total information

(4.7) Q = 2[tan-'{ Cg2 }I/2 - tan-'({ '1 /2]
* Cg2 lg
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It is obvious from (4.7) that, when item g belongs to Type A, as is the case with the normal ogive

model, logistic model, linear model, constant information model, etc., the second term in the second

factor of the right hand side of (4.7) disappears, and also the first term takes on the maximal value, r/2.

Thus we have

(4.8) Q = ,

the result which is consistent with our previous finding (Samejima, 1979). We can also see from (4.7)

that, as cg, departs from zero, and c,2 from unity, the total information Q becomes progressively

smaller than ir . In the three examples shown in Figure 4-1, we obtain Q = 2.214 for both Types B

and D, and Q = 1.287 for Type D. Also we can easily see from (4.7) that the total information Q

assumes the same value for Types B and C whenever cg 1 = 1 - cg2

[1V.3] Basic Functions and Item Response Information Functions

There are certain models for binary items which assure the existence of a unique maximum for the

likelihood function of every possible response pattern, such as normal ogive model, logistic model, etc.

In fact, except for the two extreme response patterns in which the binary item score ug assumes zero

for all items, and unity for all items, respectively, the likelihood function has a unique local maximum

in those models. It has been pointed out (Samejima, 1969, 1972) that a sufficient condition for the

unique maximum is: 1) that the basic function, which is given by

(4.9) A.t(O) = (-1)ug+1 a log Pg () Ug =0,1

% is strictly decreasing in 6 throughout its whole range, and 2) that its upper asymptote is non-negative

and its lower asymptote is non-positive. For brevity, we shall call it the unique maximum condition.

This condition implies that the item response information function is positive except, at most, at an

enumerable number of points of 0 . It has been shown (Samejima, 1972, 1973b) that the three-

parameter logistic model does not satisfy the unique maximum condition, and that the likelihood

function for certain response patterns has more than one modal point. The same is true with the

three-parameter normal ogive model.

There also are models of Type A which do not satisfy the unique maximum condition, which is

exemplified by the linear model. For simplicity, let '(6) denote the first partial derivative of %,(0)
with respect to 0 , and T"(0) be the second partial derivative. We can write for the basic functionI = -(cg2 - Cgl)'Plg(0)[(1 - cgl) - (cg 2 - cg1)Tg(0)j-' Ug = 0

(4.10) Au, (0)

=(Cu2 - cg1)V'(0)[cg1 + (cg2 - cgl)*g(0)]- 1 Ug = I

for the general form of the item characteristic function which is specified by (4.3). The item response

information function I,(0) is defined by

(4.11) I.,, () -a A., (O)
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and from (4.3) and (4.10) we can write

I = [(cg2 - cgl) 2 [{*,(0)}) 2 + {1 - g(8)}"'(8)j + (1 - Cg2)(Cg 2 -CI)

*'(8)][(l - cgI) - (Cg2- CgI),g(0)J- 2  tg = 0

(4.12) 1u,(O) - {(C2 - c ) 2 [{ql(O)} 2 - (e)1P(e)] - -

[cg0 + (cg2 - cg)g(O)J- 2  ug = 1

These formulae can be simplified for Types A, B and C by substituting cgi by zero and/or C.2 by
unity.

If we specify Tg(e) by the logistic function such that

(4.13) IR g(o) = [

then we have

(4.14) 1Pg(O) = Da,'P0 (8)[1- Tg(9)]

and

(4.15) I'(9) = D 2 a 2 '()[1- I1(8)]11-2 I'(8) .

Figure 4-2 presents four examples of the item response information functions of Types A, B., C and
D, with specified item parameters.

As we can see in these examples, in certain cases the item response information function assumes
negative values for a specific interval of 0. Let J. denote the critical value of 0 below which the

item response information function of Type B or D assumes negative values for ug = 1 , and eg be
the one above which the item response information function of Type C or D takes on negative values
for ug = 0. In general, we can write

(4.16) 0 = -(2 Dag)- [ogCg2 -logcg -+bg

(4.17) Wg = (2 Dag)-[log(1 - cg1 ) - log(1 - cg2)] + b.

These critical values are shown in Figure 4-2.
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Since the item information function is the conditional expectation of the item response information
function, i.e.,

(4.18) Ig(O) = E-II,(O) 101

the values of . and 0g indicate the direction of the information loss. Figure 4-3 exemplifies the
information loss for various values of c., and/or of C.2 for Types B, C and D.

[IV.4] Three-Parameter Logistic Model

Since three-parameter logistic model is one of the most widely used models for dichotomous test
items, special observations have been made for this model. This model belongs to Type B, and its item
characteristic function is given by

(4.19) P(O) = c., + (1 - cgi)[1 + ezp{-Dag(O - b,)}]

We also have for the total information Q in this model

(4.20) Q = r-2tan-[ C91 11/2

1 iCg

When c. = 0.20, Q equals, approximately, 0.705 ir, and when cg =0.25 , it is approximately 0.667 7r.

Since four and five are the most commonly used numbers of alternative answers to a multiple-choice

test item, the square root of the test information function 1(0) , which is given by

(4.21) [1(0)]1/2 = [ jg(e)]1/2

was observed for each of the two cases where c., = 0.20 and cg2 = 0.25 , respectively, for eleven sets

of different numbers of equivalent items, in comparison with the case where cg1 = 0 , i.e, the (two-
parameter) logistic model. These results were also compared with the corresponding results obtained

* by assuming the three-parameter normal ogive model. Standard error of measurement as a function of
ability 0 is also observed for these different sets of equivalent items.

[IV.5] Loss in Speed of Convergence of the Conditional Distribution of
the Maximum Likelihood Estimate to the Normality

The effect o, noise caused by additional parameters, cgl and C.2 , is naturally found in the loss

of the speed of convergence of the conditional distribution of the maximum likelihood estimate § ,
given 6 , to the normality. This was observed both for different sets of equivalent items as well as

%" those of non-equivalent items. It was discovered that the effect of noise is substantial in decreasing the

convergence speed.
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[IV.6 Discussion

The principal investigator's standpoint is that we should try to eliminate noise by constructing
"good" test items, since noise, which may be caused by random guessing, or by some other factors, is
nothing but nuisance. Its undesirable effect is probably greater than most researchers think. Because of
general indifference and uncritical acceptance of the three-parameter logistic model, however, it seems
necessary that someone should quantify the effect of noise incorporated in such models. The effective
use of the critical values % and 0g may be a right step toward the solution.

There are many other developments and observations which are not presented here. They include,
among others, observations of the loss of accuracy in ability estimation caused by random guessing in
the three-parameter logistic model, both for equivalent items and non-equivalent items.
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V A Latent Trait Model for Differential Strategies in

Cognitive Processes

One of the main objectives of this research project is to "bridge" psychometrics with cognitive

psychology through the advancement of latent trait theory. With the rapid progress of microcomputers
.- . in the past decade and the accompanied decreases in their cost, many scientific investigations which

were considered practically impossible in the past are now within our reach. Thus in many areas of

cognitive psychology, where researchers used to ccndut their research using relatively small samples of
subjects, we can plan our research on a much larger scale. Time is coming, therefore, that latent trait
theory will find its way to contribute to the progress of cognitive psychology.

* f Some cognitive psychologists, who have tried to approach psychometric theories, say that they do
not provide them with theories and methods with which they can deal with differential strategies. They
are not exactly right, however. As early as in the late nineteen-sixties, the heterogeneous case of the

graded reponse level in the context of latent trait theory was proposed (Samejima, 1967) as a model for
cognitive processes. Some useful hints for differential strategies are also seen (Samejima, 1972, Section
3.4) under the title "Multi-correct and multi-incorrect responses."

Following the same line, the principal investigator proposed a general latent trait model for differen-
tial strategies in cognitive processes, and discussed the topics intrinsic in the model (cf. 11.1.31, 11.1.41).
In this chapter, the outline of these works will be presented.

[V.l] Rationale

The model deals with the unidimensional latent space, in which the latent trait, or "ability", 9
assumes any real number. Thus we can write

(5.1) -c0 < 9 < 00

Let us take problem solving as an example. Suppose that for solving the problem g we need mr

sequential subprocesses. Let Y. denote the attainment category or attainment score. One must
sucessfully follow all the m9  sequential subprocesses in order to solve the problem g , so the
attainment category y. assumes integers, 0 through (mg + 1) , with y, = 0 indicating that the
individual subject has successfully followed none of the subprocesses, and with Y. = mg meaning

.- .that he has completed all rn subprocesses required to solve the problem. The additional attainment
score, (in, + 1) , indicates that the subject has successfully followed the additional subprocess which

does not exist but is hypothesized at the end of the entire sequence of subprocesses. Since no one can

accomplish this, the conditional probability, given 0 , with which the subject obtained the attainment
score (rn + 1) equals zero, regardless of a given value of 9 . With this setting, we can see that the

- general graded response model can readily be applied to the single strategy case of problem solving. Our

main objective is, however, to approach a general model for the multiple strategy case, or differential
strategies, in the context of latent trait theory.

6 It is a fairly common phenomenon that there exist more than one way of solving a problem. In
proving a mathematical theorem, for example, we often find one proof plus several alternative proofs
for one theorem. Figure 5-1 presents a simple example of a two strategy case in the form of a graph,

each strategy having a small number of subprocesses. In this example, if we take the first strategy to

< solve the problem, then we must traverse the path, vo vI v2 v3 v4 , whereas we must follow another path

ti) U 1 U2 U3 U4 U5 if we take the second strategy. (Note that vo = uo, = u1  , V = u4 and v 4 = u5
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When the subject falters, we need additional arcs in the digraph presented as Figure 5-1. Two
examples of the directed subgraphs which represent "faltering" are presented in Figure 5-2. These are
rather simple examples adding one cycle to each path included in Figure 5-1, making the strategy a trail

instead of a path. We can conceive of more complex examples, however, in which the subject traverses
several cycles repeatedly in a single walk, for example.

In our cognitive process, however, we often choose wrong strategies which do not lead to the solution
of the problem at all. Figure 5-3 illustrates such situations in which hollow circles and dashed arcs are
added to imply additional paths representing wrong strategies, and two examples of such unsuccessful
strategies. Even if the subject took a wrong strategy, he may become aware of his mistake and come
back to a previous point in the path and try another strategy. Two examples of such trails are given
in Figure 5-4. There are a great many other varieties of paths, trails, and walks, each of which might
represent a specified subject's cognitive process. The subject may walk the same cycles over and over
again, for example, or he may stop at, say, the vertex v2 in the path representing the first successful
strategy in Figure 5-4 and then may not proceed, and so forth.

It is obvious that following those cycles illustrated in Figure 5-2 and 5-4 will not directly improve
the subject's degree of attainment toward the solution of the problem. Thus we can more or less ignore

the subject's traversing on cycles, and the things that count are the paths in those graphs, rather than
trails or walks which may include one or more cycles. This implies, for instance, that the first trails
in Figures 5-2 and 5-4 are treated as equivalenr to the completion of Strategy 2, the second trails in
those two figures are equivalent to that of Strategy 1, and the two examples of unsuccessful strategies

in Figure 5-3 are equivalent to the paths uO ul u2 and uO ul u2 u3 , respectively.

There is no reason to assume that for a given individual of trait 0 the probability of success stays
the same when he chooses different successful strategies. Thus the probability with which the subject
of trait 0 solves the problem using the first successful strategy may not be the same as the one when
he uses the second successful strategy, even though the edge (V3 v4) is the same as the edge (u4 uS)

[V.2] Differential Strategy Trees

Figure 5-5 presents both the successful and unsuccessful strategies discussed in our example in the
form of a tree. Note that not only are the two points v4 and uS in Figure 5-5 the same point in
Figure 5-3, but also the two hollow circles marked with * in Figure 5-5 are a single point in Figure 5-3,
and so are the two marked with ** . We shall call this kind of tree the differential strategy tree. It is a
kind of directed graph which contains several paths representing different strategies, joining a common

, 'initial endpoint with the distinct other endpoints. We call this initial point a nothing point, indicating
that, "nothing has been accomplished yet," and the other endpoints for the successful strategies solution

L points, meaning that the "solution has been reached." Since no one can surpass a solution point, it also
represents a hypothesized attainment score which no one can obtain.

Figure 5-6 presents a little more complicated example of the digraph and corresponding differential
strategy tree, in which only successful strategies are drawn. Thus in our second example, we have five

0successful strategies and five solution points.

P. [V.3] A General Model for Differential Strategies

Let w denote the number of successful strategies for solving the probelm g . This number equals
the number of solution points in the differential strategy tree, which was illustrated in the preceding
section. Each of those w strategies consists of mg, (t = 1,2,... ,w) subprocesses, and they are

L represented by the vertices, excluding the first and last, both in the digraphs and in the differential
strategy trees. In the example which was first presented and discussed in the preceding section, w = 2,
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M,1 = 3 and M.2 = 4 and the subprocesses are represented by four edges, (0o V1), (V V2), (V2 V3 )
and (V3 V4) , in the path VO 01 V2 V3 V4 representing the first successful strategy, for example. Letpsi be the attainment score indicating the degree of attainment of the subject's performance toward
the solution of the problem g , which takes on integers 0 through i/ when the subject chooses the

* strategy i . Figure 5-7 presents the attainment scores assigned to separate edges of the differential
strategy tree of our second example.

A general model for differential strategies concerns the assignment of an operating characteristic to
each attainment score yi of each of the w strategies i for solving the problem g . By such an
operating characteristic we mean the conditional probability with which the subject of trait 6 chooses
the strategy i and obtains the attainment score y .. We notice, however, that in general, if the
subject's performance stopped before branching, there is no way to decide which of the two or more
strategies he would have taken. For example, (s s2) and (ti t2) in Figure 5-6 are a single edge, and
so are (V1 V2) and (wI w2) . Thus we must assign a single operating characteristic for each edge of
the differential strategy tree. Since each edge represents a union of one or more attainment scores, the
operating characteristic is to be assigned to each union. For instance, following an appropriate model, a
single operating characteristic will be assigned to the union of ygi = 0 for i 1, 2, 3, 4, 5 , and the same
model will provide us with an operating characteristic solely for Ya4 = 3 . For convenience, we shall

NIP choose the smallest i in each union, and let ygi denote such a union with s for the actual attainment
score. In example 2, for instance, Y,0o = (Ygl = 0) U (Yg2 = 0) U (Yg3 = 0) U (Yg4 = 0) U (Yg5 = 0) ,and

Y 34 = (Yg4 = 3) , and none of the unions, Y;02, Ygo3, Y;04 and exists.

Let My- (6) denote the conditional probability with which the subject of trait 0 obtains s as
his attainment score in one of the strategies which belongs to y ,. , with the joint condition that he
has already obtained the score a - 1 . Since there is no preceding attainment score for ygi = 0 , and
Y9*01 is the union of yi = 0 for all the t strategies, the attainment function M; 0  (0) takes on
unity throughout the whole range of 6 . On the other hand, since yei = ine/ + 1 is a hypothesized
attainment score which is higher than the full score ing, , the attainment function My;(_.6+),)

assumes zero for the entire range of 6 for each of the w strategies. Thus we can write

1 i=1, s =0

(5.2) my; (0)

=0 i=1,2,..., w, s= m +1.

Note that in (5.2) the first line indicates a single function for the union of yg1 =0 for i =1, 2,..., w
while the second line indicates w separate functions for i = 1, 2, ... , w

Hereafter, we shall assume that each attainment function My. (6) is three-times differentiable
with respect to 0 . Note that this assumption does not contradict (5.2).

Let P*. (6) be the conditional probability assigned to the union of attainment scores yg, , withYg i

which the subject of trait 0 chooses a strategy which belongs to y!.i and obtains the attainment score
a or greater. We shall call this function the cumulative operating characteristic of the attainment score
union y/g-i

From the definitions of this function and the attainment function Mj (6) , we can write

(5.3) P;., (6) = I -M . (6)
k=O,*i
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where *i indicates the closest integer less than or equal to i for which the union of attainment scores
exists. In particiular, we have

(5.4) P;, (0) =MY;.i(0) 3

Note that the first line of (5.4) indicates a single function for the union of yj = 0 for i =1,2,... ,w ,the
second line indicates one or more functions depending upon the branching, and the third line indicates
the w separate functions for i = 1, 2, . ,w . In Example 1, the second line includes two functions,

V while in Example 2 it includes three functions.

Let A;. (0) be the first derivative or the natural logarithm of the cumulative operating character-
istic P;&) ,rthat is,

(5.5) A;;, , (8) log P*;.. (8)

Note that this function is unchanged when P. (6) is multiplied by a constant. To be more specific,
Y9..

let I(p) be a function defined by

(5.6) P*- (0) = C1 +(C2 - C)'(O)

where 0 C1 !5 C2 .5 1 The fi t derivative of the natural logarithm of -!-log P. (8) is given by

'~~~~8 isi P;, , ht s

log5 +, which equals L log if, and only if, c = 0 . The formula (5.6) has
N been observed in a somewhat different context (cf. .1.1j) and these observation was summarized in

Chapter IV, where f. (6) is replaced by any strictly increasing function of with zero and unity as
eits two asymptotesn. We have called the four different types of functions derived from (5.6) Types A, B,

C and D (cf. Chapter IV), depending upon the values of cl and C2 , i.e., the function is of Type A
when .=C <C 2 =1;ofTypeBwhen O<C1 <c 2 =1;ofTypeCwhen =C <C <1;andof
Type D when 0 < C1 < C2 < 1I, respectively. This implies that the cumulative operating characteristics
of Types A and C may share the same function for A*. (), and we can say the same for those of
Types B and D. The necessary and sufficient condition it M (6) be strictly increasing in is
that the inequality

(5.7) Ay;.#(O) > Ay;g - (8_)( ) a=,2.,(mgi + i)

holds almost everywhere with respect to 8

The operating characteristic, Ps. () , defined for the union of the attainment scores o is given

by by
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(5.8) p,;.() = P;;.(O) -E P,..,,(8)
J*

where -j. indicates the summation over all the strategies j branching from the point which lies
immediately after the line representing yu.,

This operating characteristic can be considered as the likelihood function in estimating the subject's
latent trait 0

* ", When there are more than one problem to solve, i.e., g = 1,2,. .. , n , satisfying the conditional

N' independence of the attainment scores across the different items, given 0 , the maximum likelihood
estimation of the subject's latent trait can be performed on the basis of the response pattern V , such
that

(5.9) V' = (y,,,, Y2i 2 , , Ygig,, y. Y.)

* for the n problem solving tasks, where ig is a strategy for solving the problem g and ygij is the
attainment score when the subject chooses the strategy ig for solving the problem g . Let PV (6)
be the operating characteristic of the specific response pattern V . We can write

(5.10) P (e) = IPy.o(0)

S where r. indicates the multiplication over every union yg,i to which an element of V belongs.

It is beneficial to search for a family of models which provide us with a unique maximum for every
possible response pattern given by (5.9). This can be done as a generalization of the unique maximum
condition proposed for the graded response model (cf. Samejima, 1969, 1972).

The basic function, Ay;., (6) , for the union of attainment scores ygoi is defined by

(5.11) A.;,(0) = a logPy;o,(0 )

.ae

"'
The maximum likelihood estimate, 6v , of the subject's latent trait based upon his response pattern is

given as the solution of the likelihood equation such that

(5.12) alogPV(8) a log P;.,(0)

= ZA ,() = 0* •
where E. indicates the summation over every union yg*i to which an element of V belongs. A
sufficient condition that a unique modal point exists for the likelihood function Pv (6) of each and
every response pattern V is that this basic function is strictly decreasing in 6 with non-negative and
non-positive values as its two asymptotes, respectively, for every union y, . This can be shown in
the same way that we did for the basic function A2g(O) of the graded item score zg (cf. Samejima,
1969). For brevity, sometimes we call this condition the unique maximum condition.
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Similarities between the differential strategies in problem solving and the multi-correct responses
in testing are obvious. If we consider two or more different strategies which lead to the solution of
the problem as two or more different answers to a question, then they will be treated as multi-correct
responses. We can see that the concept of multi-correct responses can be transfered to differential

S.' strategies, when there exist more than one successful strategy in solving a problem.

*[V.4] Homogeneous Case
The Homogeneous case of the graded response level has been developed and discussed (Samejima,

1972) as a generalization of a family of models on the dichotomous response level. Sufficient conditions
that a model provides us with a unique modal point for the likelihood function of each and every
response pattern have been investigated. In the homogeneous case, a sufficient condition is that, for
an arbitrary item score xg ($ 0) , the cumulative operating characteristic P* (0) is of Type A, i.e.,
strictly increasing in 0 with zero and unity as its two asymptotes, and its asymptotic basic function,
Axg(O) , which is defined by

(5.13) Azg(O) = [og{-P* O}

is strictly decreasing in 0. The satisfaction of this sufficient condition also implies two desirable features
"--". of the model such that: 1) the operating characteristic of each graded item score of each item has a

single modal point, and 2) those modal points for a single item are arranged in the same order as the
item scores themselves. The normal ogive and logistic models, which have been generalized from the
corresponding models on the dichotomous response level, are two examples of the models which satisfy
the above sufficient condition.

These models of the homogeneous case on the graded response level can be generalized to provide
us with those which belong to the general model of differential strategies. Let 'T(O) be a function of
Type A. We shall consider the cumulative operating characteristic, P;*., (0) , of the union of attainment
categories y;oi such that

(5.14) P% . (0) f ly.. I(e - a1 .

where ay., is negative infinity, a.( is positive infinity for i = 1, 2,..., and the values of

are ordered in the same way as those of s for every strategy, and fly. is a constant which
equals unity for a = 0 and in general satisfies

(5.15) --flyo, =f;(.-I)'

with j. indicating the summation over all the strategies j branching from the point of the differential
strategy tree which is located right after the line representing the union .(-H . From (5.15) it is
obvious that, as far as there is no branching, fi,, = f ._ ),

A sufficient condition that the model satisfies the unique maximum condition is: 1) that the values
of the constant ay,, are the same for all the strategies j which branch from the vertex located
immediately after tge edge representing y*0 , and 2) that we have
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(5.16) a [log~( )} a

almost everywhere in the domain of 0 . To prove this, we obtain from (5.8), (5.14), (5.15) and the
definition of the basic function Ay. () , which was given by (5.11),

Oa log P0 i(6)

(5.17) A ;., ()) -

= log[fy; T(0 - y, - - a ° 1  .

where E,. indicates the summation over all the strategies j branching from the vertex which lies
immediately after the line representing the union y .i . By virtue of the first condition, we can rewrite

.,~ (5.17) in the form

(5.18) Ay;., (0) = log[1y;. {l(o - an;.) - I(0 - t;(.+1)j}aFa
::= -log{*(6 - a1 -. ) - T( - ai,.

86 ;(.+ 1) j

We notice that, if we replace yo, by the graded item score xg and use T(6 - a2 ) as the cumulative
operating characteristic P9g(0) ,the last form of (5.18) is identical with the basic function of the
graded item score, and the left hand side of (5.16) is identical with the corresponding asymptotic basic
function. Thus we can say that all the unions, y*o- , are equivalent to syndrome response categories (cf.
Samejima, 1972, Section 5.2), and a unique maximum is assured for every possible response pattern.

If, for example, lk(O) is a normal ogive function or a logistic distribution function, then (5.16) is
satisifed (Samejima, 1972, Section 5.2), and we can develop the normal ogive model and the logistic
model in the context of the general model for differential strategies, and both of them satisfy the unique
maximum condition. In these two models, the cumulative operating characteristics are defined by

" fa (o- b,;. )

(5.19) P - () = fly- (2)-112f - 0
1
2 du

. %

and

(5.20) P*. (0) = fly; .[1 + ezp{-Dag(O -by-.,)}] - '
9S~i g.,i

respectively, where ag (> 0) is the discrimination parameter specific for each problem g , by° is a
difficulty parameter defined for each union of attainment scores, with b;o, = -oo and by;. 0

and all those values are arranged in the same order as s with respect to each strategy, and D in
(5.20) is a scaling factor which assumes 1.7 to retain the same set of parameter values as those in the
normal ogive model.

Figure 5-8 presents the set of ten cumulative operating characteristics P*. (0) in Example 1, with
the parameter values such that ag = 1.00, by;,, = by; = 2.50, b y -Ibo, byg, = 0.50,
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by;=0=.so, bya o 0.00, by-d 2.00, 8. 0.60 and 6.,. = 0.40 . The corresponding operating
characteristics are drawn in Vigure 5-9, inwich all th modal points except for the negative and positive
infinities are shown.

[V.5] Single Strategy Case

In the single strategy case where there is only one successful strategy in our problem solving, things
are much more simplified. There exists a parallelism with the graded response model (Samejima, 1972),
with the replacement of the item score z, by the attainment score Y. of the unique successful strategy.

Let A (0) be the first partial derivative of the natural logarithm of P (0) ,where P* (9) equals
P . (0) with the replacement of y,0, by the single set of attainment score y , such that

Y.,

(5.21) A;(0) = logP*(0) yg = 0, 1,...,(ag + 1)

It has been shown that the necessary and sufficient condition that My, (0) be strictly increasing in 0
is that the inequality

(.22) A9 g(0) > A'Yl)(0) y= 1,2,...,(mg + 1)

holds almost everywhere with respect to 0 (cf. Samejima, 1967, 1972).

In the homogeneous case Pg (0) has zero and unity as its two asymptotes for yg = 1, 2,..., mn
and, furthermore, we can write

(5.23) P:(0) = P[(9-a,.)

where r and R are two arbitrarily selected attainment categories with r < a , and a,-, is a positive
finite constant. We obtain from (5.21) and (5.23)

(5.24) A;(0) = A,(0-co,.)

From (5.22) and (5.24) it is obvious that a sufficient, though not necessary, condition that Myg(O )
be strictly increasing in 9 for yg = 1, 2, ... , mg is that A* (0) is strictly decreasing in 0 for an
arbitrarily chosen attainment category out of 1 through mg . When mg tends to positive infinity,
and a,.r for two adjacent attainment categories tends to zero, in the limiting situation this condition
becomes the necessary and sufficient condition, for it requires that

(5.25) A+() >
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for any small positive value of e . Note that this condition is satisfied whenever the unique maximum
condition is satisfied. Above all, when the asymptotic basic function, (0; (9) , which is defined by

(5.26) A;(0) a2R

is strictly decreasing in 0 , not only My,(9) of each subprocess is strictly increasing in 0 , however
finely differentiated it may be, but also a unique maximum is assured for the likelihood function of
each and every possible response pattern which consists of such attainment scores of different tasks (cf.
Samejima, 1972, Sections 5.1 and 5.2). It has been shown (Samejima, 1967, 1972), for example, that in
the normal ogive model and in the logistic model on the graded response level (Samejima, 1969) this

* condition is satisfied. In the former example, we can write

(5.27) P(2r) = )i/2]_ 0, ezP(-u 2

and in the latter

(5.28) P,,(o) = [1+exp{-Da(-b,,)}f'

where a. is the item discrimination parameter and by, is the item difficulty parameter for the
attainment category yg , and D is a scaling factor which is usually set equal to 1.7 (Birnbaum,
1968). In both models, the upper asymptote of My (0) for y. = 1, 2,..., m is unity, while the lower
asymptote is zero in the normal ogive model and exp[-Dag(by - b(y,-l))l in the logistic model. This
lower asymptote in the logistic model depends upon the distance between the difficulty parameters of
the two adjacent attainment categories, assuming zero for yg = 1 and positive numbers less than unity
otherwise. In both models, My (0) for y. = 2,3,..., mg tends to unity for the entire range of 0 as

by, approaches b(y,,_ ) , and tends to Py (9) as by, departs from b(y-i) (cf. Samejima, 1972,
Figure 5-2-1).

This simplified model will be useful not only for cognitive processes, but also for paper-and-pencil
testing, provided that the test is constructed in such a way that each item includes only one successful
path to reach the correct answer. Such an example is given in the research report [1.1.3].

[V.6] Information Provided by Differential Strategies

The information function, Iy;, (9) ,for the union of the attainment scores y;,i is defined by

f(5.29I (9) - logP , (9) = -Ay;,()

where Py- (0) is the operating characteristic, and Ay-. (0) is the basic function, of y

This function is non-negative whenever the unique maximum condition is satisfied. In the homogeneous
case, if there is a single value ay,, common for all the strategies j , which leads to the satisfaction
of the unique maximum condition, then we can write

(5.30) ( -5a log - ay;.,) -P( a-y( )}1y;. (0) 02 - 01
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For the item information function 1,(0) we can write

(5.31) 1(0) = E[I;,,9() I9] 1 (O)P., (9)

where Y. indicates the summation over all the unions of attainment scores, or over all the edges
in the differential strategy tree. It is obvious that, in general, the more subprocesses we have within
each strategy the greater amount of item information we get, with the continuous subprocesses as the
limiting case. The differentiation of strategies itself does not necessarily increase the amount of item
information, however.

When we have n problem solving tasks which require the same latent trait 0 , for the test
information function 1(0) we can write

n

(5.32) I() = Z1 0 (o)
g=1

[V.7] Discussion

A question may arise as to which estimate of the latent trait should be taken if the subject faltered
from one strategy to another and did not reach the solution of the problem. One answer to this question
may be to take the attainment score of the strategy that he took last, and use its corresponding operating
characteristic in estimating his latent trait. Another answer may be to compare the resultant estimates
of 9 obtained by the separate strategies the subject has taken and select the highest estimate.

The usefulness of the proposed model is yet to discover. We need the collabortion of cognitive
psychologists who are willing to collect data on larter samples, taking advantage of modern technologies.
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VI Latent Trait Models for Partially Continuous and
Partially Discrete Responses

A set of latent trait models were proposed during this research period, which deals with the mixture
of continuous and discrete responses. This family of models is an expansion and a generalization of
the one proposed by the principal investigator in 1973 (Samejima, 1973), in which the open response
situation is dealt with. The family is represented by the closed response situation, and it also includes
the model for the open response situation as a special case, as well as those models for the open/closed
and the closed/open response situations.

In this chapter, the outline of these new models will be described, and one separate ongoing research
project on the Rorschach diagnosis for which these models are to be used will be introduced as an
example. For the details and further information about the models, see [1.1.5].

[VI.1] Rationale

Let 0 be the unidimensional latent trait, or any hypothetical construct, which assumes all real
numbers. Let g (= 1,2, ... ,n) be an item, which is the smallest, concrete entity devised for
measuring the latent trait. The assumption that our latent space is unidimensional implies that the
conditional or local independence of the distributions of the item responses of separate items, given 0 ,
holds in the unidimensional latent space.

.-. Distinction between the open response situation and the closed response situation may be well
illustrated, schematically, by Figure 6-1. Suppose that the subject is asked to check a point on a line
segment illustrated in Figure 6-1 in accordance with his judgment required for the task in item g .
Without loss of generality, we can assign the item score z. which varies zero through unity for each
point on the line segment.

It will be reasonable to assume that the probability assigned to any particular point on the line
segment is nil, provided that the subject is not allowed to check either of the two endpoints. We call it
the open response situation, and assumes a continuous distribution for the item score zg . If the subject
is allowed to check either of the two endpoints as well as the others, however, the probability assigned
to these points may not be nil. We call this second situation the closed response situation, and the

% . distribution of z. must be discrete at the two endpoints, i.e., at zg = 0 and zg = 1 , and continuous
otherwise. In similar manners we can define the open/closed response situation and the closed/open
response situation.

[VI.2] Conditional Distribution of the Item Score

Let P,,(O) be the conditional probability with which the subject obtains the item score zg or
greater, given 0. A general mathematical form for P9 (0) in the homogeneous case of the continuous
response model (Samejima, 1973) is given by

a (O-b,

(6 .1 ) P '( 0 ) = C90(t)d t

with
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(62 { .k P,(0)=o
(6.2)

0-0

where a,(> 0) is the item discrimination parameter, bag is the item response difficulty parameter, and
qfg(.) is a specific continuous function which characterizes the model, and is positive almost everywhere.

Two examples of T,(t) are the normal ogive function and the logistic function, which are specified,
respectively, by

(6.3) %Fg(t) = (2)-'/2 exp(-t 2 /2)

and

(6.4) Tgr(t) = D ezp(-Dt) [1 + exp(-Dt)]- 2

where D is a scaling factor. The operating density characteristic, H,(6), has been defined, and it
can be written in the form

(6.5) Hzg(e) = aoIF{a,(O - bzg)}['-gb, 0 < zg < 1

Let Pg (0) be the conditional probability of zg , given 6 . In the closed response situation, we can

1.. write

(6.6) fH()dz = 1- [Po(0) + P(0)] < 1

where Po(0) and P1 (0) indicate Pg(0) for zg = 0 and z. = 1, respectively. We can also write

for the difficulty parameter bag

l m b., = bo >-

(6.7)

lim b,, = b1 <oo

We obtain from the definitions of P., (6) and P,, (0)

' I = Q:g() Zg =o
(6.8) Pzg(0), [ P; (0) ,, = 1
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M%,

(6.9) Q;' (0) = - P., (0)

It is noted that in the closed response situation inequality holds in (6.6) and in each formula of (6.7)
and that we can create each of the other three response situations by setting Po(0) = 0 or P(0) = 0,
or both.

It is obvious from (6.5) that the operating density characteristic, H., (0), depends heavily upon the
relationship between the item score zg and the difficulty parameter b, , as well as on the functional
formula IQ(.) . In the closed response situation, the relationship between zg and bz can be any
strictly increasing function including the linear function, with the constraint that the values of b,, are
a priori specified at z# = 0 and zg = 1

For practical purposes, it may be appropriate to consider various strictly increasing polynomials for
approximations to such functional relationships. In such approximations, the method of moments for
fitting polynomials will be a usefull tool (cf. Samejima and livingston, 1979). We can write for a set of

Vconvex polynomials

k

wi=Ic(6.10) b,, bo +ZaE z

with the two constraints,

(6.11) a3j b= -b
j=1

and

j=1

where strict inequality holds for all values of z, between zero and unity, except, at most, at an
enumerable number of points. A sufficient, though not necessary, condition for the second constraint
to hold is that ai  _ 0 for j = 1, 2,..., k . We notice that the linear relationship holds by setting

* k = 1 . A set of concave polynomials can be obtained under the same condition by

(6.13) b,= b1  ii-Z~

j=1

with the same constraints given by (6.11) and (6.12). Five examples of each of the two sets of polynomials
with k = 1,3,5,7,9 ,and with ai =0 for j k, b0 = -2.0 and b0 = 2.0 are drawn by solid and
dotted lines in Figure 6-2, respectively.

In contrast to the observations made so far in the closed response situation, neither in the closed/open
response situation nor in the open/closed response situation can the functional relationship between the

item score Z. and the difficulty parameter b,, be linear, nor can it be approximated by a polynomial.
One suitable formula in the closed/open response situation may be
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(6.14) b,, = bo +tan[(r/2) (zg)]

where (z.) is any strictly increasing, continuous function of zg defined for 0 zg 1 with the
constraint

(6.15) 
(zg) 0 Zg =0

1 z=l.

Two examples of (zg) are given by polynomials such that

k

(6.16) (Z) = tjzg
3=1

and

,;: k
(6.17) (zO) = I- aj(-Zg)

j=1

with the constraints given by the right hand inequality of (6.12) and

(6.18) = 1

Figure 6-3 presents by solid curves five examples of the above functional relationship with (6.16) as
(z.) and with bo = -2.0 ,where k = 1, 3, 5, 7, 9 and a2 =0 for "< k . In the same figure, also

presented by dotted curves are the corresponding five examples of (6.14), in which (z.) is specified
by (6.17) with the same set of parameter values.

Figure 6-4 illustrates by a solid curve the operating density characteristic H5 , (0) in the normal
ogive model as a function of the continuous item score zg , for each of the four fixed values of 0 i.e.,
-3.0, -2.5, -2.0 and 0.0, with the parameters, a. = 1.0 and bo = -2.0 , using (6.14) as the functional
relationship between zg and b,, with the specification of C(z.) by (6.16) in which k = 1 and
a, = 1.0 . In the same figure, also presented by dotted curves are the corresponding operating density
characteristics in the logistic model, in which D = 1.7 .

Similarly, in the open-closed response situation, one useful formula for the relationship between the
continuous item score z. and the difficulty parameter b1, may be

(6.19) bag = b, + tan[(-7r/2) (zg)j

Ile where (zg) is any strictly decreasing, continuous function of zg defined for 0 < zg _5 1 , with the

constraint
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] = 1 =0o

(6.20) (zg) =
-0 zg=l.

Again, for practical purposes, it may suffice if we consider polynomials such that

k

(6.21) (zg) = ctj(1-Z)

or

k

(6.22) (zg) = - E aj z;
Y=

where k is the degree of polynomial and a3 (j = 1, 2, ... , k) is a coefficient, with the constraints
given by the right hand inequality of (6.12) and (6.18). If we set b1 = 2.0 and adopt the parameter
values that we used in the examples illustrated in Figure 6-3 for the closed/open response situation,
the functional relationships given by (6.19) with (6.21) and (6.22) for (z.) provide us with the set

of curves obtained by rotating those of Figure 6-3 by one hundred and eighty degrees, keeping the
unit of the ordinate and changing the upper asymptote of the curves to +2.0 . Also by rotating the
curves in Figure 6-4 in the three dimensional space as z. = 0.5 as the axis of rotation we obtain the
corresponding examples of the operating density characteristics of the open/closed response situation
for 0 = 0.0, 2.0, 2.5 and 3.5 , respectively.

[VI.3] Parametric and Nonparametric Estimations of Operating Density
Characteristics

In the parametric estimation of the operating density characteristic, some appropriate model must
be selected first, and then the estimation is reduced to that of the item parameters that belong to the
specific model. Thus, in the parameter estimation, model validation at the end of each stage of research
is a necessary and important procedure. We notice that, in the parametric approach, we can always
reduce the data based upon the continuous response level to those based either upon the graded response
level or upon the dichotomous response level, by categorizing the continuous responses into appropriate

O Idiscrete response categories. Thus those methods developed for the item parameter estimation on the
dichotomous response level (e.g., Lord, 1952, Bock and Aitkin, 1981) and their variations developed for
the graded response level, are directly applicable in estimating the item parameters of the operating
density characteristics. To be more specific, by adopting an appropriate set of values of z. , we shall

be able to obtain the corresponding set of estimated values of b, , and then by an appropriate curve
fitting we shall be able to obtain the estimated difficulty parameter function. Since our data on the
continuous response level contain more information, in so doing we can also conduct a model validation
study, if we design our research appropriately.

In the non-parametric estimation of the operating density characteristics, we assume no mathematical
forms a priori. In this direct approach, again we can reduce our data to those which are based upon the
graded response level, and those non-parametric methods developed for discrete responses (e.g., Levine,
1980, Samejima, 1977, 1981, and cf. Chapter II) can be applied. If we have Old Test, or a set of items
whose operating characteristics or operating density characteristics are already known, the application
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of the techniques will be straightforward. When there is no Old Test, we can select a certain subset of
items having high content validity out of all the items in our research, and use this subset in place of the
Old Test. In so doing, we may assume several different models for our "Old Test" items, estimate theitem parameters using suitable parametric methods, validate or invalidate each model, and select the

model which has the highest validity. We may end up with selecting different models for different items.
In such a case, as far as each model satisfies the unique maximum condition (Samejima, 1969, 1972,
1973), we can still obtain the maximum likelihood estimate of the subject's latent trait, or individual
parameter, by using the basic functions (Samejima, 1969, 1973) based upon those separate models.

In the half-open and half-closed response situations, or in the closed response situation, there is
another method, which is a combination of the parametric approach and the non- parametric approach.
In the first pair of situations, we can reduce our data to those on the dichotomous response level by using
the endpoint with a non-zero probability as one category, and recategorizing all the other continuous
responses as the other discrete category. We can use all the items thus dichotomized as the Old Test,
searching a suitable model, or models, in the same way described in the preceding paragraph. In the

0 closed response situation, we can trichotomize all the responses, using both endpoints as the lowest and
highest categories and all the continuous responses as the intermediate category, and follow the same
procedure. We can also conceive of many other variations, depending upon the points where responses
are discrete.

The main difference between this new method and the preceding one is that in the new method we
make use of all the items used in our research as the Old Test, while in the other only a subset of items0,P
is used. In general, the choice of a method should depend upon the nature of our data, including the
configuration of the characteristics of our items, the sample size of subjects, and so forth.

[VI.4J Estimation of the Individual Parameters of Subjects

When the item parameters are known, or well estimated, the estimation of the individual parameter,
or the point of the latent trait 0 at which the subject is located, can be performed through the
maximum likelihood estimation. If a simple sufficient statistic for the response pattern V such that

(6.23) V1 = (zI, z2 , ... , Zg, ..., zn)

does not exist, as is the case with most models, we will use the basic function (Samejima, 1969, 1972,
1973) and follow the numerical process to obtain the maximum likelihood estimate #v for each response
pattern V.

We can write for the general form of the basic function in the closed response situation

( = - a 0  - bo)I [Q (0)I' = 0

(6.24) A.,(0) = [ ag(0- b,,)J['Ig{a(6 - b,g)}] - ' 0 < zg < 141 81
= -- % P, (ag(O - bl)) [P (0)] -  - 1

It has been shown (Samejima, 1972) in a somewhat different context that, if q,(.) follows one of
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the formulae such as (6.3) and (6.4), those three functions in (6.24) are strictly decreasing in 0 ,the
fact that leads to the unique maximum for the likelihood function Lv (6) for each and every response
pattern V.

(6.24) also includes the basic functions of all the other three response situations, i.e., they are realized
by excluding the line in (6.24) corresponding to each open endpoint. The same rule applies for the item
response information function which will be discussed later in this chapter.

In the normal ogive model, which is characterized by (6.3), the basic function takes the form

( = -r/2 a9 exp[-a2(9 - bo)2/2] [Q;(O)J-l zg = 0

(6.25) A,, (6) = -a2(0-bg) 0< Z <1

I.= (2a)-1 /  pa( - b1)2 /2] [P;(O)]- Z = 1

This function is strictly decreasing in 0 for all the values of zg, and, in particular, for 0 < z9 <1 it
is a linear function with the slope -a2 which intercepts the abscissa at 0 = bz . The two asymptotes

of this basic function are zero and negative infinity for z. = 0 , positive and negative infinities for
0 < z9 < 1 , and positive infinity and zero for z. = 1, respectively. For the basic function in the logistic
model, which is specified by (6.4), we have

- -Da (P () z =0

(6.26) A.,(a) = Dag [1 - 2P 9,(0)] 0 < 29 < 1

= Dag QI(0) z 9 =1

We can see that this is also strictly decreasing in 6 throughout the entire range of 6 for each and

every item score z. . It is not a linear function for 0 < z < 1 , however, although it also intercepts
the abscissa at 6 = b, . The two asymptotes of the basic function are zero and -Da. for zg = 0 ,
Dag and -Dag for 0<2z<1, and Dag and zero for z. =1, respectively.

The upper graph of Figure 6-5 illustrates five examples of the operating density characteristic,
Hz, (0) , of the continuous item response z. in the normal ogive model with the item parameters
ag = 1.0, b0 = -2.0 and b, = 2.0, for z2 = 0.1, 0.3, 0.5, 0.7, 0.9 in the closed response situation,
where the difficulty parameter bag is given as the linear function of z . In the same graph, also
presented by dashed lines are those in the two limiting cases where z tends to zero and unity,
respectively. The corresponding five operating characteristics and those in the two limiting cases in the
logistic model with the same set of item parameters and the scaling factor, D = 1.7, are shown in theI lower graph of Figure 6-5.

It should be recalled (Samejima, 1973, 1974) that a sufficient statistic, t(V) = E ev ag b,, , exists
in the normal ogive model in the open response situation. It is not the case with the oter three response
situations, however, which include z = 0 or z = 1 , or both, although we can still use t(V) defined
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FIGURE 6-5

V. Operating Density Characteristic, Hzg (0) , as a Function of 0 for Each of the Five Values of the
Item Score, 0.1, 0.3, 0.5, 0.7 and 0.9 , Following the Normal Ogive and the Logistic Models, with
a. = 1.0 , bo = -2.0 , b,= 2.0 and D = 1.7 , When the Linear Relationship Holds between the
Item Score z. and the Difficulty Parameter b., . The Additional Two Curves Are Those in the
Limiting Situations Where z. Tends to Zero and Unity, Respectively. Closed Response Situation.
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above for any response pattern which does not include either zero or unity as its elements. It is also
recalled (Birnbaum, 1968) that a sufficient statistic, t*(V) = Z. ev agug , exists in the logistic model
on the dichotomous response level where z. is replaced by the Linary item score u. . Although the

V." basic functions for z, = 0 and z = 1 shown in (6.26) are identical with the corresponding functions
for u. = 0 and ug = 1 on the dichotomous response level with the replacement of PO (0) by P (0) , a
simple sufficient statistic does not exist, even though t*(V) can be used for any response pattern which
solely consists of 0 and 1 . In general, the maximum likelihood estimation of the individual parameter
must be conducted numerically through the basic functions for each response pattern.

For the item response information function, 1., (8) , we can write

82 9

(6.27) I,, () = - P() - A,, ()

= a,[( 'q,{a,(e - b0)})Qo(e) + a,(i,{ag(O - bo)}) 2 l[Q (e)] - 2  Z = 0

= [-(2--2 '{,a(e - b,)})"jb{ag(9 - b.,)} + ( 'g{a,(9 -b) 
]

-b0 < 1

= -ag[( 0 Fg{ag(9 - b)})P (9) - a,(1P0 {a,(e - b1)}) 2][Pj(0)] - 2 20 = 1

As.

In the normal ogive model, this takes the form

= a J/g{ag(O - bo)[-ag(9-bo)Q ()+Ig{ag(O -bo)}J

, [Qo (9)1- 2  20 = 0

(6.28) 1,,(0) g

g'P= a4{ag(9 - bi)}[a0 (e - bl)P(e) + Tg{ag(e - bx)]

[pl*(0)1-2 g

and in the logistic model, we obtain

*.9 f = D2 a2 Po(O) Q (O) Z = 1

- (6.29) I ( ) 2D 9 0 < Zg <

D a Pf(0) Q1(0) 20=1
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In each of the two models this item response information function is positive throughout the entire
% -. range of 0, and the unique maximum condition is satisfied. Figure 6-6 presents the item response

information function in the normal ogive model in the upper graph and the one in the logistic model in
the lower graph with the same set of parameter values and the scaling factor that we used in Figure 6-5
for z = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 , when the functional relationship between zg and b,g is

I., linear. We can see from (6.28) that in the normal ogive model the horizontal line in the upper graph
' -of Figure 6-6 indicates the item response information function for each and every value of zg in the

interval (0,1), so this includes the five cases where zg = 0.1, 0.3, 0.5, 0.7, 0.9 . Those in the two

limiting situations where 29 tends to zero and unity, respectively, are also drawn by dashed lines.

The item information function, Ig(B) , is defined as the conditional mean of the item response
information function, given 0 (Samejima, 1969, 1972, 1973), for which we can write

(6.30) I1(0) = Io(6)11- P()1+ f I,(O)Hg (O)dz, + 1,(0) P (O)

where Io(0) and I(9) indicate the item response information function 1, (0) for z = 0 and
z2 = 1, respectively. This function is drawn by a dotted line in each graph of Figure 6-6.

Figure 6-7 illustrates the operating density characteristics Hg (0) in the normal ogive and logistic
models in the closed/open response situation, with the item parameters a, = 1.0 and bo = -2.0, and
the scaling factor D = 1.7 in the latter model, for the five selected item scores, 0.1, 0.3, 0.5, 0.7, and
0.9 . The difficulty parameter function adopted here is shown in Figure 6-3 as the solid curve marked
with k = 1 . As was observed in the closed response situation, this operating density characteristic
is proportional to *g(.) with ag as the dispersion parameter and b,g as the location parameter

-:. -: with a(-!b,,) as the ratio of proportionality. Since in this example the derivative of the difficalty
. -: parameter function is given by (ir/2) sec[(ir/2)z] and it increases with z the area under thecurve of Hg(8) in Figure 6-7 increases as z does, both in the normal ogive and logistic models.

In fact, the area approaches infinity as z. tends to unity and, therefore, b,, tends to infinity, the
tendency that is hinted by the truncated curves for H,, (0) for 2 = 0.9 in the two graphs of Figure
6-7. On the other hand, when the continuous item score z9 tends to zero and, therefore, b,, tends
to b0 , the ratio of proportionality approaches (ir/2)a, , and this limiting case of H,() is shown by
a dashed curve in Figure 6-7 in each of the normal ogive and the logistic models. The areas under the
curves for the same value of z. across the two graphs of Figure 6-7 are equal.

Figure 6-8 presents the item response information function I,,(0) by solid lines and the item
information function I(6) by a dotted line in each of the normal ogive and the logistic models, with

" the same parameters, scaling factor, difficulty parameter function and fixed values of z9 as were used
in Figure 6-7, together with the limiting case of I,, (B) where z tends to zero, which is drawn by a
dashed line.

Similar observations were also made for the open/closed response situation, which will not be pre-
Vsented here because of the shortage of space.

[VI.5] Prospect of Adopting These Models for Rorschach Diagnosis

This phase of advancement of latent trait theory dealing with partially continuous and partially
discrete responses has enhanced the opportunity of applying the theory for cognitive processes further.
For one thing, the model for the closed/open response situation is readily applicable for the response
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N. FIGURE 6-6

Item Response Information Functions, 1,,(0) , (Solid Lines) and Item Information Function, Ig(O)

(Dotted Line) in the Normal Ogive and the Logistic Models, with ag = 1.0 , b0 = -2.0 , b, = 2.0

and D = 1.7. In the Normal Ogive Model, the Horizontal Line Indicates Common I, (6) for All Item

Scores, 0 < zg < 1 , While in the Logistic Model the Five Curves Identical in Shape Indicate I.,(0)
for z. = 0.1,0.3,0.5,0.7,0.9 , When the Functional Relationship between Zg and b., is Linear, with

the Two Dashed Curves as Those in the Limiting Situations When zg Tends to Zero and Unity,
Respectively. Closed Response Situation.
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latency, which must have a discrete category of "too much delay" or "too slow a response." There are
many more conceivable applications of these models, even for kinds of cognitive processes which have
never been attempted to be analyzed by psychometric methods.

As one of such ambitious research projects, in 1985 the principal investigator started exploring the
possibility of analyzing the clinicians' diagnosis based upon the Rorschach Test. At first she started
discussing the idea with one of her colleagues and the director of the Clinical Psychology Program of
the University of Tennessee, Dr. Alvin Burstein. Then starting in April, 1986, including a young Ph.D.
Scott Glass, the three researchers have met regularly and discussed the new research prospect.

During this period it was decided that we pursue the diagnosis of intellectual aspect of patients
as the starter. Although the diagnosis through Rorschach Test is basically for pathological aspects,
it is common for , linicians to consider the intellectual aspect of each patient when they decide the
therapy, regardless of the specific pathological problem the patient has. In so doing clinicians tend to
put more importance upon their own diagnosis through the Rorschach Test than the information given
by so-called intelligence tests such as WAIS, WISC, etc. Thus the diagnosis upon the intellectual aspect
through the Rorschach Test may be more useful and suitable for us to pursue as the starter, before going
into specifics such as schizophrenics, neusotics, etc. Dr. Glass took initiatives in the preliminary study,
making various frequency distributions based upon 243 subjects, and also upon randomly selected

Nsix subjects out of the more intellectual subgroup, which consists of 68 undergraduate students in the
College Scholar Program of the University of Tennessee, and also upon six subjects out of the less
intellectual subgroup, i.e., 42 foster care children of twelve to eighteen years of age. Approximately
eighty percent of the subjects of this second subgroup have 70 to 80 IQ scores measured by the
Peabody Picture Vocabulary Test.

In selecting items, the main task of the principal investigator has been to listen to the two clinicians
who are asked to self analyze their ways of diagnosing patients in their intellectual aspect through the
Rorschach Test, and also with theoretical considerations to decide the most appropriate way of scoring
each item. This has been done repeatedly over the years. Special care has been taken to avoid using
overlapping information in defining items and their separate scoring strategies, while taking as much
effort as possible to preserve and simulate the actual diagnosis. Recently, Dr. Sandra Loucks also joined

our group, and she saw our tentative conclusions in item selection and scoring strategies critically and
suggested additions and changes. Also Dr. Allen Rosenwald joined our discussion at one time by our
invitation.

Now we have reached the stage that we feel comfortable with our selection of items and their

separate scoring strategies, from both the clinicians' and the psychometrician's standpoint. Appendix

B presents these results. For each item, the model which is considered most suitable is written, in
addition to the content and the scoring strategy of the item. As we can see in this table, these models
are the open/closed response model, the closed response model and the graded response model.

This separate research project is still in progress and it will take a long time before we get the
results, for we are still in the process of obtaining more Rorschach data and of rescoring each protocol
following our definition of items and their separate scoring strategies. The prospect of the success in
this research project seems to be good, however, due to the new family of latent trait models proposed
in the present research and summarized in this chapter.

[VI.61 Discussion
This proposal of a new set of latent trait models may be one of the biggest accomplishments during

this research period. One objective of the proposed research was to bridge psychometrics with cognitive
psychology. The principal investigator hopes that in the future these models will be used in different
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areas of cognitive psychology as well as in those areas where traditionally psychometric theory and
methods have been used more frequently.

There are many more graphs which clarify the shapes of various functions developed in this part of
research. The reader is directed to [1.1.51 for them.
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VII Informative Distractors and Their Plausibility Functions
in the Multiple-Choice Test Items

The multiple-choice format has been most widely used in the paper-and-pencil testing situation, in
which the examinee is to choose one of the several alternative answers that are prearranged for each
question as his answer. This tendency has also been carried to the computerized adaptive testing, in
which the examinee is to answer a sequence of questions selected out of an item pool and presented by
a computer.

In dealing with the multiple-choice test item, three-parameter logistic model (Birnbaum, 1968) has
been popular among researchers. The model is based upon the knowledge or random guessing principle,
which assumes that the examinee either knows the answer or guesses randomly. Thus each item is scored
either right or wrong, depending upon whether the examinee has chosen the correct answer or one of the
incorrect alternative answers. All incorrect alternative answers are treated as equivalent to each other,
therefore, and it is implicitly assumed that those distractors have identical operating characteristics.
Such a family of models belongs to the Equivalent Distractor Model.

We notice that Equivalent Distractor Model does not account for any information provided by the
choices of specific wrong alternative answers. Thus it treats the multiple-choice test item as nothing but
a blurred image of the free-response test item. One must question, however, if indeed the knowledge or
random guessing principle fits the examinee's behavior in testing situations. The answer seems to be
"No" in most cases, and there exists the examinee's intentional choices of wrong alternative answers,
or distractors. Because of this fact, we need some other models that do not belong to the Equivalent
Distractor Model.

The principal investigator has proposed a new family of models for the multiple-choice test item&(Samejima, 1979), which accounts for such intentional choices of distractors by examinees. In such
models, each incorrect alternative answer, as well as the correct answer, provides us with its unique
information, although examinees may still guess randomly when they are desperate and have no idea
as to which alternative is more plausible than the others as the answer to the question. Such a family
of models belongs to the Informative Distractor Model.

The plausibility function of each distractor is defined as the conditional probability assigned to the
choice of the particular distractor, given ability. If the plausibility function of one, or more, distractor is
informative, then we will be able to make use of the information in ability estimation, as well as the one
provided by the correct answer. Thus the multiple-choice test item is no longer a 'blurred image" of
the free-response test item, but has a unique status as a test item which can be more informative than
the free-response test item. The principal investigator's family of models includes these plausibility
functions for incorrect alternative answers.

To begin with, it will be worthwhile to estimate the plausibility functions of the distractors of existing
test items, in order to find out if, indeed, some distractors provide us with their unique informations.
Since we know very little about the behavior of wrong alternative answers of the multiple-choice test

kitem, at this stage it is more desirable to approach their plausibility functions without assuming any
mathematical form. Thus, theory and methods for estimating the operating characteristics of discrete
item responses, which were summarized in Chapter II, found their full usefulness in this part of research.

In this chapter, a brief outline of the research will be described. For more details and information,
see [1.1.6].
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[VII.1] Iowa Test Data

Iowa Test Data are based upon the Iowa Tests of Basic Skills, Form 6, Levels 9-14 (Hieronymus and

Lindquist, 1971). These tests have been designed, constructed and revised at the College of Education

of the University of Iowa since 1935, with the general school population in mind, and basically for

the fourth through ninth graders. There are eleven tests in the battery, each of which focuses upon a

different basic skill. The numbers of test items in the eleven separate tests vary within the range of 74
through 178, including all the six levels.

Our data were obtained by the courtesy of Professor William Coffman of the University of Iowa.

They were collected in three different school systems in the State of Iowa, in the years 1971 through

I.? 1977, using the subtests of Levels 11, 12 and 13 (cf. Samejima and Trestman, 1980).

In the present study, the results of the 2,364 examinees on the Level 11 Vocabulary Subtest were most

intensively analyzed. This subtest consists of forty-three test items, each of which has four alternative

answers, i.e., one correct answer plus three distractors.

(VII. 2 Method

We mainly adopted the Simple Sum Procedure of the Conditional P.D.F. Approach combined with

the Normal Approach Method (cf. Chapter II) for estimating the plausibility functions. In so doing we
needed some suitable substitute for the Old Test, since there is no other set of vocabulary items whose
characteristics are already known. In order to handle this situation, we used the Level 11 Vocabulary

Subtest itself twice, i.e., first as the Old Test and later as the set of "unknown" test items. Thus on
the first stage, each item was scored either "right" or "wrong", and the normal ogive model on the

dichotomous response level was assumed. We accepted this model tentatively, and item parameter
estimation was performed for each of the forty-three test items. On the second stage, these forty-three

test items were treated as "unknown" multiple-choice test items with polychotomous item responses,
and for each item we obtained an estimated item characteristic function for the correct answer and an
estimated plausibility function for each of the three distractors. The former was then compared with

the hypothesized normal ogive function as a part of the model validation process. If the normal ogive

model was validated, then we would accept the estimated plausibility functions of the distractors. If
not, we would examine the invalidated test items, and either assume more suitable models for them or
discard these items, to produce a new Old Test and would repeat the estimation process all over again.

* It was assumed that the response tendencies of our 2,364 examinees behind the forty-three test

items had a multinormal distribution as their joint distribution. If there existed a single dominating

common factor behind these forty-three response tendencies, then it would be defined operationally as
* the vocabulary ability in question. Consequently, the ability distribution for these 2,364 subjects would

also be normal, and the origin and the unit of the scale would be defined at its mean and standard
deviation, respectively.

The tetrachoric correlation coefficient was obtained for each pair of test items, using the program

written by the principal investigator. The resulting inter-item correlation matrix was factor analyzed,

using the computer program for principal factor solution in Biomedical Computer Programs Multivariate

Analysis Series 4 (BMDP4M). The communalities were estimated iteratively, with the squared multipleUcorrelation of each variable with all other variables as its initial estimate. If we found a relatively
powerful second factor, etc., in addition to the dominating first factor, however, we would eliminate

some appropriate items from the Old Test to resolve the clusters, and factor analyze the reduced
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correlation matrix again, until we reached a single general factor pattern.

The estimated item discrimination parameter, ag, and item difficulty parameter, bg , were given
by

(7.1) ag = pg9l- 1/2

R and

(7.2) =

where pg is the factor loading of item g on the first common factor, and jg is the normal deviate

rcorresponding to the proportion correct p. of each item g.

[VII.3] Results

The same procedure leading to factor analysis was applied for each of the other ten Level 11 Iowa
Subtests, and the resulting sets of eigenvalues are shown in Table 7-1, except for those of the Level 11
Reading Comprehension Subtest (R). We can see that for the Vocabulary Subtest the set of eigenvalues
indicates a single common factor structure, although there exist relatively powerful second common
factors for several other subtests. This may be due to the fact that reading ability is always required
in any subtest in addition to its core performance, while in Vocabulary Subtests those two abilities are
close in nature.

As expected, it turned out that the factor loadings on the first common factor were all positive, and,
except for those of items 24 and 44 , they are greater than 0.300 , ranging from 0.316 for item 39 to
0.691 for item 30. The largest cluster of factor loadings we can find in those common factors excluding
those in the first one is the pair in the fourth factor, i.e., 0.393 for item 33 and 0.368 for item 44. Most
of the factor loadings on those other common factors are less than 0.300 in absolute value. From this
result, the decision was made to define the first common factor operationally as the vocabulary ability
and to use the whole set of items in the Subtest as the Old Test. The estimated item parameters a.
and bg are shown in Table 7-2, together with the proportion correct pg and the fnormal deviate -.
for each of the forty-three items.

Figure 7-1 presents the square root of the test information function of the Old Test by a solid line,
and also its approximation, i.e., the polynomial of degree 7 obtained by the method of moments using
the interval of 6 ,(-5.0, 5.0), by a dotted line. The actual formula of the latter is given by

(7.3) [1(0)]-1/2 -- 3.1915950- 0.23604972 - 0.2732255092

+ 0.02624825963 + 0.0123155784 - 0.001148595105

- 0.0002278764506 + 0.00001832269797

The method of moments was applied for four different intervals of 6 , i.e., (-4.0, 4.0), (-4.5, 4.5),
(-5.0, 5.0) and (-5.5, 5.5), and the result shown in Figure 7-1 provided us with the best fit. The
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TABLE 7-1

Eigenvalues of the Matrix (R-V) for Each of the Ten Level 11 Subtests Obtained As the Results of the
Principal Factor Solution of Factor Analysis.

Tests

V L1 L2 L3 L4 w1 M1 M2

1 11.4174 12.3175 10.5823 11.5618 8.4561 7.8066 6.5457 15.1236 10.2474 7.2963
2 1.0398 1.5332 1.9527 2.1354 1.5431 1.9619 1.0297 4.2759 1.4570 1.4043
3 0.7704 1.0122 1.5139 1.6246 0.9682 0.8137 0.9838 0.9698 0.9571 0.7383
4 0.6788 0.8248 1.0949 1.2001 0.7260 0.7445 0.7495 0.8879 0.7146 0.6322
5 0.6395 0.7283 0.7010 0.9655 0.7014 0.5331 0.6671 0.8028 0.6729 0.5763
6 0.6288 0.6740 0.6257 0.7772 0.5827 0.4974 0.5789 0.7542 0.5537 0.5334
7 0.6023 0.6048 0.6134 0.7368 0.5389 0.4299 0.5468 0.6152 0.5184 0.4784
8 0.5512 0.5207 0.5439 0.5810 0.4632 0.4107 0.4518 0.5983 0.4542 0.4523
9 0.5248 0.4739 0.4916 0.4825 0.4486 0.3541 0.3707 0.5493 0.4138 0.4165

10 0.5084 0.4207 0.4478 0.4174 0.3925 0.3069 0.3143 0.5262 0.4038 0.3271
11 0.4801 0.3885 0.3990 0.3530 0.3589 0.2329 0.2667 0.5190 0.3784 0.2913

* 12 0.4658 0.3780 0.3545 0.3239 0.3332 0.2237 0.2318 0.4880 0.3544 0.2609
13 0.4471 0.3330 0.3434 0.2952 0.3009 0.1719 0.2151 0.4504 0.3372 0.2399
14 0.4133 0.2928 0.3209 0.2158 0.2859 0.1617 0.1874 0.4165 0.3239 0.2045
15 0.3966 0.2882 0.2981 0.2042 0.2093 0.1427 0.1487 0.3635 0.2803 0.1736
16 0.3725 0.2069 0.2351 0.2022 0.1165 0.1234 0.0849 0.3516 0.2060 0.1218
17 0.3537 0.2026 0.2123 0.1505 0.1101 0.1139 0.0508 0.3268 0.1943 0.0705
18 0.3444 0.1783 0.1903 0.1387 0.0977 0.1005 0.0406 0.3018 0.1692 0.0645
19 0.3188 0.1597 0.1435 0.1329 0.0747 0.0761 0.0236 0.2837 0.1475 0.0384
20 0.3065 0.1351 0.1409 0.1015 0.0638 0.0629 0.0183 0.2500 0.1428 0.0237
21 0.2673 0.1082 0.1127 0.0892 0.0544 0.0441 0.0087 0.2042 0.1339 0.0228
22 0.2574 0.0972 0.0913 0.0702 0.0391 0.0177 -0.0112 0.1980 0.1002 0.0153
23 0.2413 0.0873 0.0893 0.0507 0.0277 0.0070 -0.0228 0.1910 0.0947 -0.0091
24 0.2286 0.0742 0.0706 0.0271 0.0095 -0.0086 -0.0431 0.1776 0.0768 -0.0218
25 0.2161 0.0645 0.0512 0.0176 -0.0077 -0.0324 -0.0758 0.1665 0.0681 -0.0392
26 0.1950 0.0478 0.0332 0.0118 -0.0103 -0.0515 -0.0793 0.1566 0.0517 -0.0452
27 0.1800 0.0381 0.0051 -0.0163 -0.0482 -0.0721 0.1391 0.0331 -0.0594
28 0.1698 0.0236 -0.0066 -0.0312 -0.0656 -0.0955 0.1190 0.0279 -0.0903
29 0.1525 0.0180 -0.0174 -0.0363 -0.0828 -0.1027 0.1059 -0.0025 -0.0991
30 0.1402 0.0060 -0.0329 -0.0475 -0.1108 -0.1164 0.0990 -0.0137
31 0.1285 -0.0180 -0.0476 -0.0584 -0.1222 -0.1201 0.0837 -0.0306
32 0.1216 -0.0271 -0.0701 -0.0659 -0.1529 -0.1378 0.0686 -0.0394
33 0.1139 -0.0385 -0.0747 -0.0851 -0.1500 0.0588 -0.0483
34 0.0939 -0.0705 -0.1062 -0.0965 -0.1713 0.0437 -0.0808
35 0.0844 -0.0783 -0.1241 -0.1117 -0.1846 0.0362 -0.0982
36 0.0605 -0.1021 -0.1373 -0.1298 -0.2370 0.0184 -0.1098
37 0.0508 -0.1103 -0.1500 -0.1540 0.0151 -0.1244
38 0.0401 -0.1223 -0.1798 -0.1731 0.0083 -0.1458
39 0.0172 -0.1322 -0.2007 -0.1923 -0.0138 -0.1598
40 0.0060 -0.1637 -0.2288 -0.2152 -0.0221 -0.1691

* 41 -0.0121 -0.1761 -0.0294 -0.1934
42 -0.0154 -0.1950 -0.0397 -0.2323
43 -0.0275 -0.2147 -0.0425
44 -0.0492
45 -0.0650
46 -0.0788
47 -0.0884

48 -0.0954

49 -0.1259

5, 50 -0.1422

51 -0.1520

52 -0.1637

F3 -0.1676
1 4 

-0.1872
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TABLE 7-2

Estimated Item Discrimination Parameter ag and Item Difficulty
Parameter b9 , Proportion Correct pg and Normal Deviate g,

for Each of the Forty-Three Old Test Items of the Iowa Level 11
Vocabulary Subtest.

Discrimination 01fficulty Proportion Nomal
Item Parameter Parameter Correct Deviateg g g pg S'g

-Vj.
.e 24 0.196 -4.257 0.79315 -0.81740

25 O.829 -1.000 0.73816 -0.6376F
26 0.614 -0.821 0.66624 -0.4295:.
27 0.594 -0.340 0.56895 -0.17370
28 0.669 -0.900 0.69162 -0.S0045
29 0.867 -1.077 0.75973 -0.70543
30 0.956 -0.557 0.64975 -0.38465
31 0.938 -0.179 0.54865 -0.12225
32 0.940 -0.803 0.70897 -0.55038
33 0.434 -2.331 0.82318 -0.92755
34 0.598 -1.210 0.73266 -0.62088
35 0.489 -0.569 0.59856 -0.24962
36 0.657 -0.987 0.70601 -0.54177
37 0.351 0.577 0.42428 0.19096
38 0.665 -0.468 0.60237 -0.25949
39 0.333 -0.676 0.58460 -0.21368
40 0.683 0.402 0.41032 0.22672
41 0.531 -0.948 0.67174 -0.44472
42 0.436 0.258 0.45897 0.10303
43 0.672 -0.867 0.68570 -0.48370
44 0.143 4.175 0.27665 0.59282

- 45 0.898 -0.357 0.59433 -0.23870
46 0.612 -0.318 0.56599 -0.16617
47 0.494 -0.781 0.63536 -0.34608
48 0.849 0.054 0.48604 0.03500
49 0.421 -0.626 0.59602 -0.24306
so 0.346 -0.250 0.53257 -0.08173
51 0.664 -0.420 0.59179 -0.23215
52 0.640 0.217 0.45347 0.11690
53 0.402 0.526 0.42217 0.19635
54 0.573 0.126 0.47504 0.06261
55 0.667 -0.342 0.57530 -0.18988

.2, 56 0.593 1.007 0.30372 0.51373
57 0.370 0.398 0.44501 0.13828
58 0.416 0.782 0.38198 0.30028
59 0.491 -0.731 0.62648 -0.32254
60 0.678 -0.170 0.53807 -0.09557
61 0.519 0.748 0.36506 0.34497
62 0.938 -0.485 0.62986 -0.33148
63 0.637 -0.398 0.58460 -0.21368
64 0.818 -0.042 0.51058 -0.02652
65 0.606 0.595 0.37902 0.30806

14 66 0.604 -0.376 0.57699 -0.19420
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FIGURE 7-1

Square Root of Test Information Function [1(8)11/2 of the Level 11 Vocabulary Subtest (Solid Line)
and Its Approximation by the Polynomial of Degree 7 Obtained by the Method of Moments with the

Specified Interval of 6 [-5.0, 5.01 (Dotted Line).
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FIGURE 7-2

Square Root of Test Information Function [I*(rj11/2 of the Level 11 Vocabulary Subtest Obtained
from the Polynomial Transformation of 0 to r (Dotted Line) and Its Target (Solid Line).
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polynomial for transforming 6 to r was obtained from this result, and it turned out to be a polynomial
of degree 8 such that

(7.4) r(O) = 0.00000000 + 0.797898740 - 0.02950621502

- 0.02276879203 + 0.001640516204 + 0.0006157789105

- 0 .0 0 0 0 4 7 8 5 8 1 2 70e - 0.000008138444607 + 0.0000005725842808

Figure 7-2 presents the square root of the test information function of r thus obtained by using the

approximated polynomial for [1(0)11/2 which was given by (7.3) and the derivative of r obtainable
from (7.4). Since the interval of 0, (-4.0, 4.0), corresponds to the interval of r , (- 2.44244, 2.02098),

the latter is shown by arrows in Figure 7-4. We can see that for this interval of r the approximated
* " Asquare root of the test information function, [.(r)]1/2 , is practically constant.

The maximum likelihood estimate, j. of 0 was obtained for each individual subject from his
response pattern on the Old Test items, and was transformed to that of r through (7.4). On this
stage, eight subjects whose 0, are outside of the interval (- 3.75, 3.75) were excluded permanently

*from the rest of the research, so that the number of subjects was reduced to 2,356.

The method of moments was applied for the set of 2,356 f, 's to produce the best fitted polynomials
of degrees 3 and 4 in the least square principle (cf. Samejima and Livingston, 1979), and they turned
out to be

(7.5) 4'(f) = 0.42358084 - 0.046813019f

- 0.13270786?2 + 0.0200142O2"
3

and

I (7.6) ()= 0.45023559 - 0.044232853f - 0.20387563f2

+ 0.018406862f
3 + 0.022176405f

4

respectively.

Table 7-3 presents the frequency distribution of the 2,356 Vs with respect to the types of the

conditional distribution of r , given f. , in both Degree 3 and 4 Cases. These types, 1 through 7,

.indicate Pearson's Types (Elderton and Johnson, 1969; Johnson and Kitz, 1970) which were assigned
by evaluating the values of the criterion r.. We can see in this table that in both Degree 3 and 4 Cases

* .. more than sixty percent of the cases belong to the normal distribution, while most of the others belong
14. to the Beta distribution, i.e., either Pearson's Type 1 or 2. There are some cases whose conditional

distributions of r are undefined, either due to a negative value for an estimated even conditional
moment or to a negative value for the estimated conditional probability density. Those subjects were

excluded from the rest of the research.

The above results support our choice of the Normal Approach Method in both Degree 3 and 4 Cases.

Moreover, a close examination of the skewness and kurtosis indices further discloses the fact that, in
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TABLE 7-3

Frequency Distribution of the 2,356 f, with Respect to
Their Pearson Types for the Conditional Distributions

of .

Degree 3 Degree 4
Type Case Case

1 362 380
~..• . 2 402 220

3 0 0

4 6 69

5 0 1
6 1 8

7 0 89

normal 1,458 1,536

und. 1 112 47

und. 2 15 6

Total 2,356 2,356

und. 1 : Undefined Due to Negative Even
- ".-. Conditional Moment(s).

und. 2 : Undefined Due to Negative P.D.F.

,.

,
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* most cases where the conditional distributions of r belong to Pearson's Types 1 or 2 distribution, they
are very close to 0.0 and 3.0, respectively, i.e., the numbers which characterize the normal distribution.

Since these two sets of results are very similar to each other, from there we dealt solely with Degree
4 Case. It is worth noting, however, that the results of Degree 3 Case would be just as respectable as
those of Degree 4 Case, in spite of the fact that the degree of the polynomial approximating g*(f) is
one less and as small as 3.

Figure 7-3 exemplifies the resulting estimated item characteristic function and estimated plausibility
functions for each of the four items, i.e., items 37, 43, 44 and 45. For most of the forty-three items,
the fitness of the estimated item characteristic function with the initial normal ogive curve, which are
drawn by dotted and solid lines, respectively, is as good as that of item 43 or 45, although for some
items it is a little worse, as is illustrated in the first graph for item 37. The only exception is item
44, whose four estimated functions are also shown in Figure 7-3. With all these things considered, it
was decided to accept the first Old Test, and not to repeat the whole procedure using a modified Old
Test. The estimated plausibility functions for items 37 and 45 indicate the existence of some informative
distractors for these items, although some other distractors do not explicitly show their informativeness,
such as the one drawn by the shortest dashed line in each of the two graphs. For item 43 the three
distractors did not prove to be very informative. Note, however, these distractors may be informative
on much lower levels of ability 0

The model validation was further made by computing the chi-square statistics testing the bivariate
normality for each pair of response tendencies. The results turned out to be fairly supportive.

[VII.4] Discussion

The item analysis on the Iowa Test Data turned out to be easier and more successful than the
principal investigator had anticipated. Most of the test items are not likely to follow the Equivalent
Distractor Model, to which the three-parameter logistic or normal ogive model belongs. We have

.--. discovered many distractors which are informative, and the results suggest that most of the items
follow the Informative Distractor Model. Methodologies involved in the present study appear to be
promising, and they will find their usefulness in many other future studies.

The next logical step will be to find out how we can make the best use of the information obtainable
from the distractors as well as from the correct answers, in or',,: to increase the efficiency of ability
estimation. It is also necessary to collect data for subjects of lower levels of ability in order to find the
information provided by all distractors. There is a good prospect that the new family of models for the
multiple-choice test item will find its place. In this brief summary only flavor of this part of research
was presented. There are many more interesting results for this set of data, and the reader is directed
to [I.1.61. All the results on the other Level 11 Subtests and those on Levels 12 and 13 Subtests are
excluded in the present report because of the shortage of space.
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*VIII Analysis of Shiba's Data Collected upon His Word/Phrase
Comprehension tests: Comparison of Tetrachoric Method

.4, and Logist 5 on Empirical Data
-. 4

As was pointed out earlier, three-parameter logistic model (Birnbaum, 1968) has earned its popularity
-, in the past years as a model for the multiple-choice test item. This tendency was facilitated by the

availability of computer programs, which are represented by Logist 5 (Wingersky, Barton and Lord,
1982), for estimating the three item parameters. Logist 5 can be used not only for the item parameter
estimation in the three-parameter logistic model, but also in the (two-parameter) logistic model, by
setting the third parameter equal to zero.

S. In this part of research, Logist 5 and Tetrochoric Method, the latter of which was outlined in the
preceding chapter in analyzing the Iowa Test data, were used for the item analysis of empirical data,
and comparison was made between the estimated item parameters obtained by assuming the normal
ogive model and those obtained by Logist 5 assuming the (two-parameter) logistic model. It is well
known (Birnbaum, 1968) that (two-parameter) logistic model provides us with a good approximation
to the normal ogive model if we set the scaling factor D equal to 1.7. In some cases, item parameter
estimation was also made by Logist 5 assuming the three-parameter logistic model, and comparison was
extended to those results also.

The research report for this part of research contains three hundred thirty-five pages, and it is
difficult to even summarize the results. For this reason, only limited illustrations will be given in this
chapter. For details and other results and findings, see [1.2.7].

[VIII.1] Shiba's Data

Empirical data adopted here were taken from the test data provided by the courtesy of Professor
Sukeyori Shiba of the University of Tokyo, Japan. Shiba's research on the measurement of word/phrase

- comprehension has been introduced earlier (Samejima, 1980). The battery of tests used for the con-
struction of Shiba's word/phrase comprehension scale consists of thirteen tests, API, AP2, Al, A2, A3,
A4, A5, A6, J1, J2, S1, S2 and U . Each of these thirteen tests contains thirty to sixty multiple-choice
items, each of which has a set of five alternatives. These tests differ in difficulty, and each is designed for

-., a different age group of subjects, ranging from four years of age to the ages of college students. There
are subsets of items included in two tests, which are adjacent to each other in difficulty. For example,
items 37 through 56 of Test J1 are also items 1 through 20 of Test J2. There are 480 test items in
total. The number of examinees used by Shiba for the ability scale construction varies between 219
preschoolers for Test AP1 and 924 second graders of senior high schools for Test S1

-e, The principal investigator has found Shiba's tests very well constructed. Professor Shiba and she
have been collaborating for the past ten years, and she decided to adopt Shiba's data for this part of
research. Some of the results obtained by the Tetrochoric Method were taken from Professor Shiba's
work itself.

A' Out of Shiba's thirteen tests, four tests were chosen for the present research, i.e., AS, A6, J1 and
J2. The examinees who took these four tests in Shiba's original data are as the following.

Test AS: 599 fifth graders in elementary schools
Test A6: 412 sixth graders in elemei.tary schools
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Test J1: 614 first graders in junior high schools
Test J2: 758 third graders in junior high schools

These groups of examinees and their performances are called, for brevity, A5/0599 Case, A6/0412
Case, 31/0614 Case and J2/0758 Case, respectively. There are also 461 second graders in junior high
school who took Test J1 in Shiba's original data. In order to increase the number of examinees, this

* - group of 461 subjects and their performances were added to the J1/0614 Case, to provide us with the
J1/1075 Case. This case was further joined by an additional group of 1,184 students of four different
junior high schools in Tokyo, to whom Test 31 was administered in some other research of Shiba's. We
shall call this largest group of examinees and their performances J1/2259 Case. Thus we have six cases
in total, with three of them partly overlapping.

When the item parameter estimation was made by Logist 5, in some cases two or more tests and
the corresponding samples of examinees were combined, in order to increase the number of test items
and hence to improve the accuracy of estimation. Table 8-1 presents the resulting combinations of tests
and the numbers of examinees. When two or more adjacent tests are combined, the number of items is
less than the sum total of the numbers of items of the separate tests because of the overlapping items.

[VIII.2] Results

Figure 8-1 presents the estimated ability distribution of each of the original and combined examinee
,. groups, which was obtained through the item parameters estimated by the Tetrochoric Method.

Figure 8-2 shows eight scatter diagrams of the estimated item discrimination parameters of Test
J1. They consist of four pairs, in each of which the Logist 5 results of "cg-zero" (left) and "cg-free"

r (right) are compared with the results of the Tetrachoric Method. These results are obtained for different
cases, and they are specified in the captions of separate pairs. We can see a substantial consistency
between the two sets of estimated item discrimination parameters in the first graph of each of the four
pairs, i.e., when (two-parameter) logistic model is assumed in using Logist 5 , whereas there exists little
consistency in the second graph of each pair, i.e., when three-parameter logistic model is assumed. We
notice that the greatest consistency is observed in the first graph of the first pair of scatter diagrams
and in the first pair of the third pair. They are Case J1/1075:cg-zero of Logist 5 against J1/1075 Case
of the Tetrachoric Method and Case Jl/2259:cg-zero against J1/2259 Case of the Tetrachoric Method,
i.e., the only two situations which concern the same examinee group both in using Logist 5 and in using
Tetrachoric Method, and no guessing parameter is assumed in using Logist 5 . This fact suggests that
these two methods provide us with consistent results when the item parameter configurations are such
as those of Test J1, if the sample size is 1,000 or above. The corresponding eight scatter diagrams for
the estimated item difficulty parameters are presented in Figure 8-3. We can see a similar tendency
as we have observed for the estimated discrimination parameters, although inconsistency between the
two sets of estimates is less conspicuous when three-parameter logistic model is assumed in using Logist
5. These tendencies were carried out almost as they are even after certain scale adjustments had been
made in order to make the comparison more adequate (cf. [1.2.71, Chapters 6 and 8).

Figure 8-4 presents four graphs which clarify how estimated item parameters differ when three-

parameter logistic model is assumed in comparison with those when (two-parameter) logistic model is
assumed. The first two graphs concern with the group of 1,075 examinees and the last two with the
group of 2,259 examinees, and in each pair the first graph concerns with the adoption of the (two-
parameter) logistic model and the second with the three-parameter logistic model. In each graph, the
estimated item difficulty parameters of the items of Test J1 are taken on the abscissa, and the estimated
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TABLE 8-1

Tests, Numbers of Items, Number of Examinees and Other Information
for Thirteen Different Cases.

' .

" ' 'Original No. of

N Method Test(s) No. of No. of Excluded Items
Examinees Items Items Included

I Tetrachoric A5 599 48 3,13,17 45
* Method A6 412 56 -- 56

(Shiba) 31 614 56 38 55
J2 758 60 2 59

Tetrachoric J1 1,074 56 38 55
Method 1 2,259 56 38 55

* (Samejima)

Logist 5 0.0 A5,A6 1,011 88 -- 88
0.0 Ji,J2 1,833 96 -- 96

c 0.0 A5,A6,J1,J2 2,844 168 -- 168
0.0 31 1,075 56 38 55

free 1 1,075 56 38 55
0.0 J1 2,259 56 38 55

free J1 2,259 56 38 55

1000.

8(30.0J1/2259!U

.,." ; / / "/ ,' ............. .

z Al/1075
>. 400.0 A5-A- -X- ' -. _

.w / ' .. i '.J1/0614 %, Jz/Olsa2 A5/0599 . S.

- 0 -40 -3.0 -2.0 -10 0.0 10 20 30 40 50 60

LATENT TRAIT 0

FIGURE 8-1

Estimated Ability Distributions (Solid Lines) of the A5/0599, A6/0412, J1/0614 and J2/0758 Cases,
Those of the J1/1075 Case (Long Dashed Line) and of the J1/2259 Case (Short Dashed Line), Together

with Those (Dotted Lines) of the Combined Examinee Groups, A5-A6, J1-42 and A5-A6-J1-J2.
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discrimination parameters are taken on the ordinate. Both the results of the Tetrachoric Method and
those of Logist 5 are plotted in each of the four graphs, to make the total number of points 110. To avoid
confusion, there are five different symbols, i.e., & , , , # and + , in these graphs,

.- and an arrow is drawn for each item from the point indicating the result of the Tetrachoric Method to
that of Logist 5

Comparison of the first graph of Figure 8-4 with the second, and of the third graph with the fourth,
discloses how radically the two estimated parameters of these items of Test J1 are enhanced because
of the existence of the guessing parameter c. when, in using Logist 5, three-parameter logistic model
is assumed. These tendencies are similarly observed in both pairs, where the examinee groups of 1,075

-' individuals and of 2,259 examinees are involved, respectively. These tendencies were carried out almost
as they are even after a certain scale adjustment had been made in order to make the comparison more
adequate (cf. [1.2.7], Chapter 8).

Table 8-2 presents the direct estimates of the mean and the standard deviation of the distribution of
the maximum likelihood estimate of ability, j , for each of the five examinee groups, which are shown
as Examinee Group 2, obtained from the combined linear relationship in each case. Since there are
more than one way of obtaining these two values in each case, all of these results are presented in Table
8-2. In this table, Examinee Group 1 indicates the group of examinees upon which the item parameters

were estimated by the Teti achoric Method, and Examinee Group 2 means the group of individuals upon
which they were estimated by Logist 5. Thus the mean and the standard deviation of the distribution
of § of Case J1-42, for example, can be estimated in two ways, i.e., through the scatter diagrams of
the estimated parameters of the items of Test J1, and through those of the items of Test J2. In the
same table, the weighted averages of the estimated mean and standard deviation of the distribution of
0 are also given for each examinee group. The weight adopted here is the number of the examinees in
Examinee Group 1. We can see in these results that most estimates for the same group of examinees
are close to each other.

Figures 8-5 through 8-8 present five estimated item characteristic functions for each of four items
of Tests A5, A6, J1 and 32, respectively. In each graph, the re,-ult based upon the estimated item
parameters obtained by the Tetrachoric Method is drawn by a solid line, and all the other four curves
of different lengths of dashes concern with those based upon the estimated item parameters by Logist
5 . We notice that there are basically two sets of estimated item parameters which were obtained by
Logist 5, i.e., one based upon either Case A5-A6 or Case J1-42 and the other upon Case A5-A6-J1-J2.
For brevity, we shall call the former approach Method A and the latter Method B. In each of these two
cases the estimated item parameters were adjusted twice, i.e., first on the assumption that the mean
and the standard deviation of the distribution of 0 are the same as those of the distribution of 0, and,
secondly, without this assumption. In each graph of Figures 8-5 through 8-8, the results based upon
Method A and upon the first and the second scale adjustments are drawn by a long dashed line and
a short dashed line, respectively, and those based upon Method B and upon the first and the second
adjustments are shown by a dashed line of medium length and dotted line, respectively.

%I From these results, we can say the following.

(1) For many items, the two Logist 5 results based upon the second scale adjustment are close
to each other, while those based upon the first scale adjustment are substantially different
from each other.

(2) In addition to the above, the two Logist 5 results based upon the second scale adjustment
also tend to be closer to the result of the Tetrachoric Method.
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TABLE 8-2

Estimated Mean and Standard Deviation of the Distribution of
for Each Examinee Group Shown as Examine Group 2, for Which
Logist 5 Was Used. Examinee Group 1 Indicates the Group upon
Which Tetrachoric Method Was Applied and Whose Result Was

Paired with the Result of Examinee Group 2.

Examinee Examinee Mean S.D.
Group 1 Group 2

A5/0599 AS-A6 -0.67690629289170 00 0.94984351209870 00
A6/0412 A5-A6 I -0.7567180593797D 00 0.9441285727625D 00
JI/0614 A5-A6 -0.75407910857040 00* 0.8971611496158D 00*

Weighted Average -0.7094309692449D 00 0.94751457539590 00

J1/0614 J1-J2 0.7790302264265D 00 0.1376714237914D 01
J2/0758 J1-J2 0.8197747749259D 00 0.1406229808384D 01

Weighted Average 0.8015406985566D 00 0.1393020945214D 01

A5/0599 A5-A6-JI-J2 0.18832703348690 00 0.12160206299810 01
A6/0412 A5-A6-JI-J2 0.1514122790061D 00 0.1285118299006D 01
J1/0614 A5-A6-J1-J2 0.1704262695468D 00 0.1522456056989D 01
J2/0758 AS-A6-JI-J2 0.19383911617830 00 0.1601146033909D 01

Weighted Average 0.1790858294478D 00 0.1429425853648D 01

JI/1075 J1/1075 0.30175006749560 00 0.12059537818110 01
J1/0614 J1/1075 0.2970263355266D 00 0.1202006556190D 01

Weighted Average 0.30003285528190 00 0.12045188519520 01

J1/2259 J1/2259 0.3018676309476D 00 0.1077806694358D 01
J1/0614 J1/2259 0.30316841351640 00 0.1080768213593D 01

Weighted Average 0.3021456262477D 00 0.1078439612148D 01

* This is based on only 14 items while all the other results are

based on at least 36 items. This result was excluded from the
computation of the weighted average.
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These two findings seem to justify the second scale adjustment, and also to support the consistency in
the results of the two methods, i.e., Tetrachoric Method and Logist 5.

Figures 8-9 and 8-10 present the results of J1/1075 and J1/2259 Cases for each of four items of Test
J1. Again in each of these graphs a solid curve represents the estimated item characteristic function
in the normal ogive model, whose item parameters were originally obtained by the Tetrachoric Method
and then adjusted. The other four curves are based upon the estimated item parameters obtained by
Logist 5 , with two of them by assuming (two-parameter) logistic model and the other two by assuming
three-parameter logistic model.

From these results we can find the following.

(3) For many items the logistic curve obtained with the second scale adjustment, which is
shown by a short dashed line, is very close to the normal ogive curve, which is drawn by

Xa solid line.

P (4) For certain items, the three-parameter logistic curves are drastically different from the
* other three curves, whereas for many other items they are close to the other three for

-% the range of 0 , (-1.0, oo) , regardless of the fact that the estimated discrimination
parameters are substantially larger.

[VIII.3] Discussion
Tetrachoric Method has been criticized recently for such reasons that: 1) the tetrachoric correlation

t .. matrix does not turn out to be positive definite, and 2) the correlation does not handle too difficult and

too easy items well. While the second criticism makes sense, the principal investigator does not agree
with this negative standpoint. First of all, it should be remembered that, in using the tetrachoric cor-
relation coefficient, we need the assumption of bivariate normality for each pair of response tendencies.
Care must be taken, therefore, to make sure that our subjects are a practically randomly selected sample
of a "non-restricted" population, before we use the Tetrachoric Method. Secondly, the first criticism
is mostly based upon results obtained by poorly written computer programs of tetrachoric correlation
coefficient. With a well written computer program and a suitable group of subjects, the method can

I, be useful, unless the test includes so many too difficult and/or too easy items. This was proved by the
success of the method in analyzing Shiba's Data, and also in analyzing the Iowa Test Data, which were
introduced in Chapter VII.
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IX Item Parameter Estimation Using Logist 5 on Simulated
Data

It has been shown in the result of the item analysis of Shiba's Data that the discrimination parameter
estimated by Logist 5 tends to be greater, if the third parameter c, is set free, and to a lesser extent
the same is true with the difficulty parameter. It has also been observed that in spite of this fact the
resulting estimated item characteristic function tends to be closer to those obtained by the Tetrachoric
Method and by Logist 5 with zero as the set value of cg , than those enhanced c4, and b suggest.
This fact should be taken as a warning to researchers who have been accepting a. as the discrimination

power and b. as the difficulty index of the item when three-parameter logistic model is assumed. The
truth iL that, unlike in the two-parameter model such as the normal ogive and the logistic models, in
the three-parameter model both the discrimination and the difficulty of the item are contaminated by
the guessing parameter c, , and neither a, nor b, has a meaning by itself.

0 Since Shiba's Data are empirical data, there is no way of knowing the true item characteristic function
of each item. With simulated data, however, we can produce items whose true item characteristic
functions follow the normal ogive model. If we assume the three-parameter logistic model for these

6. test items, instead of the normal ogive or the logistic model and estimate the three item parameters
simultaneously by using Logist 5, shall we obtain the estimate of c. which is close enough to the true
value, zero, and the estimates of a. and b. which are close enough to their true values? Or will this
additional free parameter c. contaminate the result so that we will be provided with a substantially
different set of estimated item parameters?

In this part of the research we tried Logist 5 on a set of simulated data and pursued this issue. This
c h.pter will outline its method and results. For the details and more information, see [1.2.81.

[IX.1] Simulated Data
Two tests were hypothesized, which consist of ten and thirty-five dichotonmous items, respectively,

each following the normal ogive model. For brevity, we shall call them Ten Item Test and Thirty-Five
Item Test, respectively. They were used separately, and also together as a test of forty-five items, and
these cases are called Cases 1, 2 and 3, respectively. In addition to these three, we have Case 4 of eighty
items. This last case was created rather artificially in order to observe the results based upon a larger

number of items.

The hypothesized ability distribution is uniform, for the interval of ability 0 , (-2.5, 2.5). Starting
with -2.475 and ending with -2.475, five hypothetical subjects were placed at each of the one hundred
points with the common interval width of 0.050, to create the 500 Subject Case. Later, this was

repeated three times more, to obtain the 2,000 Subject Case. Monte Carlo Method was used to produce
a response pattern for each hypothetical subject. In practice, however, each item of the Thirty-Five

Item Test was a graded item having two difficulty parameters. It was redichotomized by using the first
difficulty parameter only, and each response pattern was adjusted accordingly. Later, when Case 4 was
created, these same response patterns were used again by redichotomozing each item using the second
difficulty parameter.

4.
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[IX.2] Method

Logist 5 was used twice for each combination of a subject group and a set of items, first for estimating
the three parameters a, , b and cy , and then for estimating a. and bU only by setting c. = 0
as we did in analyzing Shiba's Data. This means that we assumed the three-parameter logistic model
in the first situation, and the (two-parameter) logistic model in the second.

In Logist 5, the origin and the unit of ability . are set at the mean and the standard deviation of
its maximum likelihood estimate r, for all subjects whose j, are within the interval of (-3.0, 3.0) as
the result of the last iteration. This cause! some problems, because in so doing the effect of the error
involved in j, is ignored, and also the excluded subjects affect the resulting scale in each case. Since
there is no simple way to make the scale adjustment, however, these scale differences were not adjisted
in the research.

The theoretical item and indi idual parameters were transformed in order to make them comparable
to the results obtained by Logist 5. Since we have

(9.1) () = )/2

and

(9.2) Var.(0) p (L -

for the uniform distribution with the interval (a,fi) ,the origin of 0 was kept as it was, and the unit
was made 1.443375673 times larger.

[IX.3] Results

Tables 9-1 through 9-8 present the true and estimated discrimination and difficulty parameters for
the eight combinations of a hypothetical test and a subject group. We can see there is a general tendency
of the enhancement of the estinated discrimination parameters, and to a lesser extent of the estimated
difficulty parameters.

This enhancement of the estimated discrimination parameters is more revealing if we plot those
values against the theoretical discrimination parameters a. . Figures 9-1 and 9-2 illustrate those

Sresults of the 500 and 2,000 Subject Cases, respectively, with both the three-parameter logistic and
the logistic models assumed for Case 3. In each of these graphs, the upper limit set for the estimated
discrimination parameter in using Logist 5 is indicated by a dotted, horizontal line. Also a solid line
with the angle of 45 degrees from the abscissa passing (0,0) is drawn in each graph. We can see in these
results that, although there is some improvement in those obtained by setting co = 0.0 in Logist 5,

* many discrimination parameters are outrageously overestimated in both the 500 and 2,000 Cases. This
tendency is even more conspicuous for the two cases of smaller number of test items. The enhancement
is reduced to some extent in the results of Case 4, especially in the 2,000 Subject Case. It is still

" substantial, however.

The corresponding results on the difficulty parameters in the 500 and 2,000 Subject Cases are
illustrated as Figures 9-3 and 9-4, respectively. In these graphs, the interval of 0, (-V/3, x/3) , for
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TABLE 9-1

Theoretical and Estimated Item Parameters in the 500 and 2,000 Ten Item Test. Three-Parameter
Logistic Model Is Assumed. Case 1.

Guessing
Discrimination Parameter Difficulty Parameter Parameter

Item Theoretical Estimated Theoretical Estimated Estimated

1 500 2,000 500 2,000 500 2,000
Org. Adj. S.C. S.C. Org. Adj. S.C. S.C. S.C. S.C

1 1.50000 2.16506 4.00000 0.95615 -2.50000 -1.73205 -7.00850 -4.53097 0.11111 0.00000
2 1.00000 1.44338 1.12847 1.89857 -2.00000 -1.38564 -2.27705 -1.25111 0.11111 0.23137
3 2.50000 3.60844 4.00000 7.00000 -1.50000 -1.03923 -1.49140 -1.02797 0.01285 0.01897
4 1.00000 1.44338 1.49368 2.16571 -1.00000 -0.69282 -0.76647 -0.34862 0.12154 0.15474
5 1.50000 2.16506 4.00000 5.73384 -0.50000 -0.34641 -0.39155 -0.07764 0.01397 0.04219
6 1.00000 1.44338 1.81350 2.45766 0.00000 0.00000 -0.00846 0.25474 0.04756 0.06358
7 2.00000 2.88675 3.08340 6.30172 0.50000 0.34641 0.32296 0.49745 0.00000 0.00499
8 1.00000 1.44338 1.47734 2.11129 1.00000 0.69282 0.72304 0.81349 0.00000 0.00645
9 2.00000 2.88675 4.00000 5.73230 1.50000 1.03923 1.10169 1.04610 0.00000 0.00000

10 1.00000 1.44338 0.65759 0.98121 2.00000 1.38564 2.60342 2.08713 0.00000 0.00000

TABLE -2

Theoretical and Estimated Item Parameters in the 500 and 2,000 Subject Cases for

Each Item of the Ten Item Test. Logistic Model Is Assumed. Case 1.

Discrimination Parameter Difficulty Parameter

Item Theoretical Estimated Theoretical Estimated

S500 2,000 1500 2,000

Org. Adj. S.C. S.C. Org. Adj. S.C. S.C.

1I 1.50000 2.16506 7.00000 4.46012 -2.50000 -1.73205 -1.79784 -1.82777
2 1.00000 1.44338 1.66645 1.48512 -2.00000 -1.38564 -1.40424 -1.41994
3 2.50000 3.60844 e.83938 477435 1-1.50000 -1.03923 -1.00147 -0.98488
4 1.00000 1.44338 1.38928 1.55463 -1.00000 -0.69282 -0.64011 -0.63939
5 1.50000 2.16506 3.61872 3.26944 -0.50000 -0.34641 -0.18574 -0.25476

1.00000 1.44338 1.53595 1.60692 0.00000 0.00000 0.11857 0.10502
2.00000 2.88675 3.38480 4.45453 0.50000 0.34641 0.52054 0.51174

8 1.00000 1.44338 1.70183 1.66029 1.00000 0.69282 0.86021 0.88896
9 2.00000 288675 7.00000 6:08234 1.50000 1.03923 1.18334 1.18419

10 1.O0000 1.44338 1.00086 1.12968 2.00000 1.38564 2.09119" 2.01825

101

e % 'f r e e % % % v, %

L %



'.i

TABLE 9-3

Theoretical and Estimated Item Parameters in the 500 and 2,000 Subject Cases for Each Item of the
Thirty-Five Item Test. Three-parameter Logistic Model Is Assumed. Case 2.

Discrimination Parameter Difficulty Parameter PareternParameter

Item Theoretical Estimated Theoretical Estimated Estimated

r. d 500 2,000 500 2,000 500 2,000
Org. Adj. S.C. S.C. Org. Adj. S.C. S.C. S.C. S.C.

O 11 1.80000 2.59808 -..--- -4.75000 -3.29090 -.-

12 1.90000 2.74241 --- --- -4.50000 -3.11769 ---... ... ...
13 2.00000 2.88675 --- --- -4.25000 -2.94449 ---........

14 1.50000 2.16506 7.00000 2.10115 -4.00000 -2.77128 -2.31556 -3.02161 0.08667 0.02122
15 1.60000 2.30940 --- 4.95191 -3.75000 -2.59808 --- -2.41505 --- 0.02122
16 1.40000 2.02073 7.00000 2.01814 -3.50000 -2.42487 -2.31184 -2.66637 0.08667 0.02122
17 1.90000 2.74241 2.34600 6.25083 -3.00000 -2.07846 -2.49184 -1.97065 0.08667 0.00000
18 1.80000 2.59808 1.66937 2.45684 -3.00000 -2.07846 -2.53506 -2.23919 0.08667 0.02122
19 1.60000 2.30940 5.95996 2.62153 -2.75000 -1.90526 -1.63507 -1.90260 0.33907 0.02122
20 2.00000 2.88675 4.54064 3.93175 -2.50000 -1.73205 -1.75362 -1.66113 0.00000 0.16847
21 1.50000 2.16506 3.60897 3.57269 -2.25000 -1.55885 -1.52887 -1.47593 0.00000 0.00000
22 1.70000 2.45374 3.72440 5.79677 -2.00000 -1.38564 -1.26918 -1.20411 0.19618 0.17118
23 1.50000 2.16506 5.93530 4.14441 -1.75000 -1.21244 -0.86540 -1.04556 0.31164 0.12398
24 1.40000 2.02073 2.15613 2.50797 -1.50000 -1.03923 -0.91905 -0.92924 0.05498 0.08893
25 2.00000 2.88675 4.30412 3.82653 -1.25000 -0.86603 -0.82709 -0.84287 0.00000 0.01227
26 1.60000 2.30940 3.08081 3.00092 -1.00000 -0.69282 -0.61492 -0.62173 0.00000 0.03369
27 1.80000 2.59808 3.41671 3.29292 -0.75000 -0.51962 -0.42482 -0.50742 0.01715 0.00712
28 1.70000 2.45374 3.73975 3.15448 -0.50000 -0.34641 -0.29610 -0.32412 0.00000 0.00000
29 1.90000 2.74241 3.55043 3.43681 -0.25000 -0.17321 -0.16918 -0.15937 0.00000 0.00000

'p 30 1.70000 2.45374 3.26689 2.97724 0.00000 0.00000 0.06045 0.03331 0.00000 0.00000
31 1.50000 2.16506 2.51771 2.68637 0.25000 0.17321 0.24396 0.17012 0.00000 0.00132
32 1.80000 2.59808 3.36240 3.58997 0.50000 0.34641 0.38959 0.35692 0.00000 0.00000
33 1.40000 2.02073 2.49348 2.33960 0.75000 0.51962 0.49717 0.47978 0.00000 0.00000
34 1.90000 2.74241 3.92561 3.63878 1.00000 0.69282 0.64148 0.65455 0.00000 0.00000
35 2.00000 2.88675 4.36628 3.48851 1.25000 0.86603 0.78414 0.85172 0.00000 0.00000
36 1.60000 2.30940 2.61472 2.72612 1.50000 1.03923 1.01803 1.02596 0.00000 0.00000
37 1.70000 2.45374 2.54991 2.90554 1.75000 1.21244 1.21299 1.22349 0.00000 0.00000
38 1.40000 2.02073 1.97089 2.25224 2.00000 1.38564 1.38765 1.34179 0.00000 0.00000
39 1.90000 2.74241 6.12277 3.14405 2.25000 1.55885 1.47525 1.52861 0.07920 0.00000
40 1.60000 2.30940 4.30567 3.39256 2.50000 1.73205 1.51061 1.62665 0.00000 0.00000
41 1.50000 2.16506 2.50260 2.18581 2.75000 1.90526 2.09183 1.97325 0.00000 0.00000
42 1.70000 2.45374 7.00000 6.00998 3.00000 2.07846 1.82767 1.88083 0.00000 0.00000
43 1.80000 2.59808 3.18005 1.91086 3.25000 2.25167 2.10989 2.68272 0.00000 0.00000
44 2.00000 2.88675 --- --- 3.50000 2.42487 ---...

45 1.40000 2.02073 7.00000 3.75000 2.59808 --- 2.19254 --- 0.00198
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TABLE 9-4

Theoretical and Estimated Item Parameters in the 500 and 2,000 Subject Cases for
Each Item of the Thirty-Five Item Test. Logistic Model Is Assumed. Case 2.

* Discrimination Parameter Difficulty Parameter

Item Theoretical Estimated Theoretical Estimated

O 500 2,000 500 2,000
Org. Adj. S.C. S.C. Org. AdJ. S.C. S.C.

11 1.80000 2.59808 .. -.75000 -3.29090  .
12 1.90000 2.74241 ... --- 4.50000 -3.11769 ... ...

13 2.00000 2.88675 ... ... -4.25000 -2.94449
14 1.50000 2.16506 7.00000 2.66184 -4.00000 -2.77128 -2.24211 -2.72393
15 1.60000 2.30940 --- 1.80462 -3.75000 -2.59808 . - 3.48102
16 1.40000 2.02073 5.85000 2.18952 -3.50000 -2.42487 -2.27498 -2.57504
17 1.90000 2.74241 2.65490 4.80292 -3.00000 -2.07846 -2.38002 -1.98730
18 1.80000 2.59808 1.86159 2.27740 -3.00000 -2.07846 -2.43453 -2.28213
19 1.60000 2.30940 3.04990 2.35694 -2.75000 '-1.90526 1 -1.84166 -1.94374
20 2.00000 2.88675 5.26700 3.67092 -2.50000 -1.73205 -1.69718 -1.71751
21 1.50000 2.16506 3.68387 3.53050 -2.25000 -1.55885 -1.517121 -1.48068
22 1.70000 2.45374 1 2.78792 3.44789 -2.00000 1-1.38564 -1.41474 -1.32688
23 1.50000 2.16506 2.29748 3.17041 -1.75000 -1.21244 -1.215151 -1.15032
24 1.40000 2.02073 2.06001 i 2.20858 -1.50000 -1.03923 -0.989951 -1.02123
25 2.00000 2.88675 4.28130 3.59910 -1.25000 -0.86603 -0.854961 -0.86681
26 1.60000 2.30940 3.00410 2.66034 -1.00000 1-0.69282 -0.63407 1 -0.66631
27 1.80000 2.59808 2.96481 3.16909 -0 .75000 1-0.51962 0 .45806 -0.52025
28 1. 70000 2.45374 3.67673 3.11533 -0.50000 1-0.34641 -0.30288 -0.32330
29 1.0000 2.74241 3.46570 3.44479 -0.25000 -0.17321 -0.17130 -0.15421
30 1.70000 2:45374 3.24069 I2.95857 1 0.00000 0.00000 0.06386 0.04162
31 1.50000 2.16506 2.48202 2.63270 p 0.25000 0.17321 0.24964: 0.17709
32 1.80000 2.59808 3.28184 3.56525 0.50000 0.34641 0.39818 0.36913
33 1.40000 2.02073 -2.4474 2.33705 0.75000 0.51962 0.50649 0.49057
34 1.90000 2.74241 3.75665 3.62024 1 1.00000 10.69282 1 0.65520 0.66711
35 2.00000 2.88675 I4.35412 3.52539 -1.25000 10.86603 i0.79956 0.86196
36 1.60000 2.30940 I2.74792 I2.8114.4 p1.50000 1.03923 1.02172 1.03020
37 1.70000 2.45374 1 2.63339 3.03734 p1.75000 1.21244 11.21153 1.22028
38 1.40000 2.02073 2.03766 P2.36148 i2.00000 1 .38564 1.380591 1.33170
39 1.90000 2.74241 3.39088 1 3.39749 12:25000 1:55885 1.45505' 1.50674
40 '1.60000 2.30940 4.77467 3.54667 2.50000 1.73205 1.49452 1.60441
41 1.50000 12:16506 2.58117 1 2.27431 2.75000 1.90526 2.07618 1.93828
42 1.70000 2.45374 I7.00000 5.94718 3.00000 I2.07846 1.83612 1.85210
43 1.80000 2.59808 12.91442 1.95702 3.25000 2.25167 2.15710 2.63901
44 2.00000 2.88675 - -- 3.50000 I2.42487 -- _ I

45 1.40000 2.02073 -- 4.38154 3.75000 2.59808 --- 2.24655
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TABLE 9-5

Theoretical and Estimated Item Parameters in Lhe 500 and 2,000 Subject Cases for Each Item of the

%'- Ten Item Test and the Thirty-Five Item Test. Three-Paraneter Logistic Model Is Assumed. Case 3.

Discrimination Parameter e nDifficulty Parameter Geter
DParameter

Item Theoretical Estimated i Theoretical Estimated Estimated

500 2,000 . 500 2,000 500 2,000
Org. Adj. S.C. S.C. Org. i Adj. S.C. S.C. S.C. S.C.

1 * I 1.50000 2.16506 7.00000 3.16857 -2.50000 -1.73205 -1.58337 -1.70186 0.31911 0.00000
%2 1.00000 1.44338 3.87013 2.20593 -2.00000 -1.38564 -0.82818 -0.99213 0.42360 0.33765

3 2:50000 3.60844 6.61387 6.11440 -1.50000 -1.03923 -0.88235 -0.94942 0.07876 0.06904
4 1.00000 1.44338 1.66601 1.60446 -1.00000 -0.69282 -0.57784 -0.65341 0.06874 0.02886
5 1.50000 2.16506 2.77616 2.49209 -0.50000 -0.34641 -0.27650 -0.33620 0.00000 0.00000
6 1.00000 1.44338 1.55749 1.58121 0.00000 0.00000 0.02360 -0.00453 0.01465 0.00128
7 2.00000 2.88675 2.96359 3.40269 0.50000 0.34641 0.36510 0.36758 0.00000 0.00022
8 1.00000 1.44338 1.76403 1.68448 1.00000 0.69282 0.65648 0.69709 0.00000 0.00000
9 2.00000 2.88675 4.38452 3.69650 1.50000 1.03923 0.97398 0.98698 0.00000 0.00000
10 1.00000 1.44338 1.54466 1.67432 2.00000 1.38564 1.32856 1.35974 0.00000 0.00000
11 1.80000 2.59808 ...--- -4.75000 -3.29090 --- --- ---.. ..

12 1.90000 2.74241 ...--- -4.50000 -3.11769 --- - ---
13 2.00000 2.88675 --- --- -4.25000 -2.94449 .... ...
14 1.50000 2.16506 7.00000 2.19806 -4.00000 -2.77128 -2.37410 -2.95371 0.08826 0.10234
15 1.60000 2.30940 --- 1.90897 -3.75000 -2.59808 --- -3.36769 --- 0.10234
16 1.40000 2.02073 7.00000 1.84048 -3.50000 -2.42487 -2.37226 -2.75675 0.08826 0.10234
17 1.90000 2.74241 2.00167 5.60182 -3.00000 -2.07846 -2.63823 -1.99530 0.08826 0.00000
18 1.80000 2.59808 1.62591 2.21154 -3.00000 -2.07846 -2.57808 -2.29576 0.08826 0.10234
19 1.60000 2.30940 4.45727 2.36176 -2.75000 -1.90526 -1.63765 -1.92579 0.43106 0.10234
20 2.00000 2.88675 6.38769 3.87045 -2.50000 -1.73205 -1.73779 -1.68322 0.00000 0.14877
21 1.50000 2.16506 2.89572 3.06226 -2.25000 -1.55885 -1.57782 -1.50616 0.00000 0.00000
22 1.70000 2.45374 3.03416 4.41425 -2.00000 -1.38564 -1.33087 -1.18774 0.14331 0.20630
23 1.50000 2.16506 3.81430 3.36983 -1.75000 -1.21244 -0.89510 -1.05681 0.28760 0.10975
24 1.40000 2.02073 2.17074 2.43977 -1.50000 -1.03923 -0.87115 -0.92907 0.09159 0.08490
25 2.00000 2.88675 3.70917 3.62242 -1.25000 -0.86603 -0.81486 -0.83289 0.00000 0.01472
26 1.60000 2.30940 2.86861 2.96961 -1.00000 -0.69282 -0.59335 -0.60991 0.00000 0.03712
27 1.80000 2.59808 3.06301 3.14587 -0.75000 -0.51962 -0.41924 -0.50798 I 0.00089 0.00000
28 1.70000 2.45374 4.17905 3.18564 -0.50000 -0.34641 -0.27372 -0.31965 0.00000 0.00000
29 1.90000 2.74241 3.65756 3.30394 -0.25000 -0.17321 -0.15748 -0.15832 0.00000 0.00000
30 1.70000 2.45374 3.36662 2.92438 0.00000 0.00000 0.05765 0.03296 0.00000 0.00000
31 1.50000 2.16506 2.49791 2.60306 0.25000 0.17321 0.24144 0.16800 0.00000 0.00000
32 1.80000 2.59808 2.97532 3.17624 0.50000 0.34641 0.38466 0.35806 0.00000 0.00000
33 1.40000 2.02073 2.39944 2.24392 0.75000 0.51962 0.49468 0.48257 0.00000 0.00000
34 1.90000 2.74241 3.56410 3.65448 1.00000 0.69282 0.64140 0.65986 0.00000 0.00000
35 2.00000 2.88675 4.31324 3.29432 1.25000 0.86603 0.78225 0.85445 i 0.00000 0.00000
36 1.60000 2.30940 2.51338 2.56816 1.50000 1.03923 1.01267 1.02876 0.00000 0.00000
37 1.70000 2.45374 2.43304 2.70841 1.75000 1.21244 1.20847 1.22648 0.00000 0.00000
38 1.40000 2.02073 1.99664 2.25976 2.00000 1.38564 1.37635 1.33734 0.00000 0.00000
39 1.90000 2.74241 2.91426 3.11288 2.25000 1.55885 1.47260 1.52379 0.00000 0.00000
40 1.60000 2.30940 3.98169 3.20664 2.50000 1.73205 1.51130 1.63052 0.00000 0.00000
41 1.50000 2.16506 2.40751 2.03311 2.75000 1.90526 2.12160 2.00855 0.00000 0.00000
42 1.70000 2.45374 7.00000 6.06362 3.00000 2.07846 1.86710 1.88062 0.00000 0.00000
43 1.80000 2.59808 2.68843 1.73795 3.25000 2.25167 2.20918 2.79685 0.00000 0.00000',,,.44 2.00000 2.88675 ... ...- 3.50000 2.42487 --- I ... ... ..

- 45 1.40000 2.02073 --- 7.00000 3.75000 2.59808 --- 2.19260 --- 0.00198
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TABLE 9-6

Theoretical and Estimated Item parameters in the 500 and 2,000 Subject
Cases for Each Item of the Ten Item Test and the Thirty-Five Item Test.

Logistic Model Is Assumed. Case 3.

Discrimination Parameter Difficulty Parameter

Item Theoretical Estimated Theoretical Estimated

I500' 2,000 500 2,000
- Org. Adj. S.C. S.C. Org. Adj. S.C. S.C.

1 1.50000 2.16506 4.95337 3.28161 -2.50000 -1.73205 -1.67240 -1.67029
2 1.00000 1.44338 1.69224 1.57696 -2.00000 -1.38564 -1.36571 -1.35902
3 2.50000 3.60844 4.07728 4.17736 -1.50000 -1.03923 -1.01281 -1.02694
4 1.00000 1.44338 1.46003 1.53778 -1.00000 -0.69282 -0.70019 -0.70004
5 1.50000 2.16506 2.68987 2.47682 -0.50000 1-0.34641 -0.30131 -0.34419
6 1.00000 1.44338 1.44917 1.55961 0.00000 0.00000 -0.01392 -0.00994
7 2.00000 2.88675 2.86243 3.32482 0.50000 0.34641 0.36627 0.36951
8 1.00000 1.44338 1.72479 1.67575 1.00000 0.69282 0.66329 0.70095

. 9 2.00000 2.88675 4.34492 3.69979 1.50000 1.03923 0.98918 0.99343
10 1.00000 1.44338 1.53441 1.68119 2.00000 1.38564 1.34230 1.36275
11 1.80000 2.59808 ... ... 1-4.75000 -3.29090 ... ...
12 1.90000 2.74241 --- --- -4.50000 -3.11769 ... ...
13 2.00000 2.88675 --- --- -4.25000 -2.94449 ... ...
14 1.50000 2.16506 7.00000 2.91928 -4.00000 -2.77128 -2.15752 -2.60081
15 1.60000 2.30940 --- 1.74182 -3.75000 -2.59808 . -. 3.53483
16 1.40000 2.02073 7.00000 2.09438 -3.50000 -2.42487 -2.15752 -2.60017
17 1.90000 2.74241 2.73182 5.71243 -3.00000 -2.07846 -2.32255 -1.91514

*,18 1.80000 2.59808 1.93571 2.41736 -3.00000 -2.07846 -2.37937 -2.22083
19 1.60000 2.30940 2.78781 2.41276 -2.75000 -1.90526 -1.85334 -1.92091
20 2.00000 2.88675 7.00000 3.84414 -2.50000 -1.73205 -1.66676 -1.69924
21 1.50000 2.16506 3.05070 3.28211 -2.25000 -1.55885 -1.54605 -1.48938
22 1.70000 2.45374 2.81049 3.11682 -2.00000 -1.38564 -1.42047 -1.33659
23 1.50000 2.16506 2.18879 2.84317 -1.75000 -1.21244 -1.22508 -1.15676
24 1.40000 2.02073 1.98367 2.16013 -1.50000 -1.03923 -0.99519 -1.02270
25 2.00000 2.88675 3.78513 3.38927 -1.25000 -0.86603 -0.85820 -0.86525

V 26 1.60000 2.30940 2.79550 2.57449 -1.00000 -0.69282 -0.63042 -0.66551
27 1.80000 2.59808 2.94721 3.13646 -0.75000 -0.51962 -0.45199 -0.51928

a 28 1.70000 2.45374 4.01387 3.15357 -0.50000 -0.34641 -0.29894 -0.32714
29 1.90000 2.74241 3.47887 3.27011 -0.25000 -0.17321 -0.17677 -0.16301
30 1.70000 2.45374 3.26431 2.89248 0.00000 0.00000 0.04783 0.03087
31 1.50000 2.16506 2.41301 2.57220 0.25000 0.17321 0.23779 0.16763. 32 1.80000 2.59808 2.87394 3.12995 0.50000 0.34641 0.38646 0.36035

1 33 1.40000 2.02073 2.34406 2.22892 0.75000 0.51962 0.49893 0.48570
1 34 1.90000 2.74241 3.47064 3.61903 1.00000 0.69282 0.65094 0.66576
. 35 2.00000 2.88675 4.20559 3.28752 1.25000 1 0.86603 0.79511 0.86083

36 1.60000 2.30940 2.49622 2.58101 1.50000 1.03923 1.02635 1.03417

37 1.70000 2.45374 2.42736 2.72468 1.75000 1.21244 1.22281 1.23107
38 1.40000 2.02073 1.99253 2.27881 2.00000 1.38564 1.39037 1.34037
39 1.90000 2.74241 2.94510 3.18444 2.25000 1.55885 1.48530 1.52314
40 1.60000 2.30940 3.99991 3.23204 2.50000 1 1.73205 1.52512 1.63091
41 1.50000 2.16506 2.40032 2.03234 2.75000 1.90526 2.13695 2.01093
42 1.70000 2.45374 7.00000 6.04216 3.00000 2.07846 1.87981 1.87873
43 1.80000 2.59808 2.70006 1.73892 3.25000 2.25167 2.22019 2.79913
44 2.00000 2.88675 --- --- 3.50000 I 2.42487 ... ..L." 45 1.40000 2.02073 .. I 4.00385 3.75000 2.59808 2.31592
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which the ability distribution is uniform, is indicated by two solid, vertical lines. A reasonably good
agreement is observed between the estimated and the theoretical difficulty parameters for the subset of
items whose theoretical difficulty parameters are within the interval, (-V0, V3) • Some improvement
is observed in the results obtained by assuming the logistic model compared with those obtained by
assuming the three-parameter logistic model, both in the 500 Subject Case and in the 2,000 Case, in
each of the Cases 1, 2, 3 and 4.

Figure 9-5 presents the estimated item discrimination parameters of Case 4 plotted against the true
discrimination parameters. In this figure, all items whose difficulty parameters are outside the range of
(-Vf3-, Vr) are plotted by hollow shapes. Case 4 has produced the best agreement of the four cases in
each situation, and we can see that agreement is further improved by excluding these hollow shapes. A
substantial enhancement of the estimated discrimination parameters still exists, however. The resulting
estimated item characteristic functions are all compared to the theoretical curves in graphs in 11.2.8].

Figures 9-6 and 9-7 illustrate the estimated individual parameters jo plotted against the true values
-% . for the 500 and 2,000 Subject Cases, respectively, in Case 3 where we have thirty-test items.

[IX.4] Discriminating Shrinkage Factor and Difficulty Reduction Index

V' It has been observed that the enhancement of the estimated discrimination parameter exists in both
situations where we set the third parameter c9 free and at zero in Logist 5, respectively. This indicates
the effect of scaling problem in Logist 5 where the standard deviation of the maximum likelihood
estimate of j, , instead of that of 9. , is defined as the unit. Since the standard deviation of 0. is
expected to be larger than 0. for the kind of data such as ours, the estimated discrimination parameters
are expected to be enhanced, and the estimated difficulty parameters are expected to be regressed, than
what they actually are.

It has also been observed that the enhancement of the estimated discrimination parameter tends

to be larger in the situation where three-parameter logistic model is assumed, in comparison with the
"* situation where c9 is set equal to zero. This fact suggests that there exists the enhancement of the

estimated discrimination parameter caused by the third parameter c9 . It is also suggested from the
estimated difficulty parameters that the enhancement of the estimated difficulty parameter will also
exist when three-parameter logistic model is assumed, if an appropriate scale adjustment of 0 is made.

For these reasons, the principal investigator proposed the discrimination shrinkage factor and the
difficulty reduction index, following certain rationale. They are given by

(9.3) [5(c;) -  = [log(1 - c;) - log(1 + c,)I[log(1 - 2c;1

and

(9.4) :(c I -g) = (D-,)'[og(1 + c) - log(l -

where c. is the estimated positive third parameter when it actually should equal zero. Thus we can
revise the estimated discrimination parameter a, by setting
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Estimated Discrimination Parameters Which Were Revised by the Discrimination
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(9.5) ag = a;(c;)]

and the estimated difficulty parameter b. by

V. (9.6) gI = b;- (c; a.)

Figures 9-8 and 9-9 illustrate the results of these revisions for the 2,000 Subject Case in Case 3. Com-
parison of these figures with Figures 9-2 and 9-4 indicates the effects of these revisions.

[IX.5] Discussion

The present research disclosed the danger of accepting the results of Logist 5 without modifications.
yIt is the principal investigator's wish that researchers become aware of the danger, and think twice

before accepting the results as they are.

Again in this chapter only a small part of the research was presented because of shortage of space.
There are many more interesting findings and observations contained in [1.1.8].

P.6
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X Discussion and Conclusions

In writing this final report, the principal investigator has found it extremely difficult to summarize
and integrate all the different approaches and findings of the research. They include: (1) basically
theoretical works such as the proposal of two new latent trait models (cf. Chapters V and VI), that of
the MLE bias function for general discrete responses (cf. Chapter llI), constancy in item information
and the information loss caused by noise (cf. Chapter IV), etc., 2) combinations of theoretical and
methodological works including a substantial amount of computer programming such as the estimation
of the operating characteristics of discrete item responses (cf. Chapter II), etc., 3) basically empirical
studies such as the analyses of the Iowa Data and that of Shiba's data (cf. Chapters VII and VIII), and
4) basically a simulation study like the observations of the results of Logist 5 (cf. Chapter IX). The
above is a rough categorization, for the contents are overlapping. To give some examples, the proposal
of the discrimination shrinkage factor and the difficulty reduction index in Chapter IX are theoretical
works, the plausibility function of a distractor observed in Chapter VII has something to do with the
Informative Distractor Model, and all theoretical works have some empirical studies or their prospects
involved.

The principal investigator believes that all these different approaches are essential to the advancement
-* of latent trait theory, and are the reason for the fruitfulness of the present research project. She regrets,

however, that she had to leave out many other interesting findings and observations from this final
report, because of the shortage of space and of the difficulty in summarizing all of them. She hopes that

S•readers of this final report who have got interested in particular topics will read the original research
reports and/or conference handouts.

The principal investigator also believes that she has accomplished something during this research
period, in line with the proposed objectives for the advancement of latent trait theory. At the end of
this research project, she would like to express her gratitude to the Office of Naval Research for this
research opportunity.
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APPENDIX A

Contents of Advanced Seminar on Latent Trait Theory (1982)

I Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: I

(1.1) Relationship between the Estimation of the Operating Characteristics and That of
Ability Distributions

(1.2) No Mathematical Forms are Assumed for the Operating Characteristics of the Unknown
Test Items

(1.3) Small Number of Examinees in the Calibration Data

"' (1.4) Old Test

(1.5) Set of Five Hundred Maximum Likelihood Estimates

* (1.6) Unknown Test Items Whose Operating Characteristics Are to Be Estimated
(1.7) Use of Robust, Indirect Information

A (1.8) Transformation of Ability 0 to r

H Method of Moments As the Least Squares Solution for Fitting a
Polynomial

(II.1) Approximation to the Density Function from a Set of Observations

-". (11.2) Method of Moments As the Least Squares Solution for Fitting a Polynomial

* (11.3) Direct Use of the Least Squares Solution

(II.4) Solution by the Method of Moments

(11.5) Expanded Use of the Method of Moments

* (11.6) Selection of the Interval

(11.7) Comparison of the Results Obtained by the Method of Moments and by the Direct

Least Squares Procedure

HI Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: II

(III.1) Estimated Operating Characteristics Which Are Directly Observable from Our
Calibration Data

(111.2) Necessary Correction for the Scale of the Maximum Likelihood Estimate When Used
*. As a Substitute for the Ability Scale

(111.3) Transformation of 0 to r Using the Method of Moments for Fitting a Polynomial

[ (III.4) Classification of Methods and Approaches

(111.5) Normal Approximation Method
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(111.6) Approximation to the Density Function of the Maximum Likelihood Estimate by a
Polynomial Obtained by the Method of Moments

(111.7) Pearson System Method

(111.8) Two-Parameter Beta Method

(111.9) Normal Approach Method

(Il1.10) Bivariate P.D.F. Approach

(Ill. 11) Histogram Ratio Approach

(111.12) Curve Fitting Approach

(111.13) Conditional P.D.F. Approach

(111.14) Remark on the Approximation of 0(r f ) by Normal Density Function

IV Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: UI

(IV.1) Objective Testing and Exchangeability

(IV.2) Every Test Has a Limitation

(IV.3) Alternative Estimators for the Maximum Likelihood Estimator

(IV.4) Bayes Estimator with a Uniform Density as the Prior

(IV.5) Subtest 3

(IV.6) Nine Subtests As Our Old Test

(IV.7) Sample Linear Regression of f. on rT

(IV.8) Polynomial Approximation to the Density Function, g(f)

(IV.9) Estimated Item Characteristic Functions Obtained upon Subtests 1, 2 and 3

(IV.IO) Estimated Item Characteristic Functions Obtained upon the Six Other Subtests

V Adaptive Testing

(V.1) Addition of New Test Items to the Item Pool

(V.2) Weakly Parallel Tests

(V.3) Use of the Amount of Test Information as the Criterion for Terminating the
Presentation of New Test Items

(V.4) Test Information Function and Standard Error of Estimation

(V.5) Old Test for Item Calibration

(V.6) Adaptive Testing Using Graded Test Items

(V.7) Bayesian vs. Maximum Likelihood Estimation in Adaptive Testing
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VI Constant Information Model

(VI.1) Constancy of Information under the Transformation of the Latent Trait

(VI.2) Constancy of Item Information for a Specified Model

(VI.3) Constancy of Item Information for a Set of Models

(VIA) Exact Area under the Square Root of the Item Information Function

(VI.5) Constant Information Model

(VI.6) Use of Constant Information Model for a Set of Equivalent Test Items Which
Substitutes for the Old Test

(VI.7) How to Detect a Subset of Equivalent Binary Items

(VI.8) Convergence of the Conditional Distribution of the Maximum Likelihood Estimate to
the Asymptotic Normality When a Test Consists of Equivalent Items

KVII A New Family of Models for the Multiple-Choice Test Item: I

(VII.1) Mathematical Models and Psychological Reality

(VII.2) Three-Parameter Logistic Model

(VII.3) Tokyo Research

(VII.4) Sato's Index k

(VII.5) Index k* for the Validation Study of the Three-Parameter Logistic Model

(VII.6) Simulation Study on Index k*

(VII.7) Iowa Tests of Basic Skills

(VII.8) Original and Revised Iowa Data

(VII.9) Informative Distractor Model

I. (VII. 10) Equivalent Distractor Model

(VII.11) Index k* for the Invalidation of the Equivalent Distractor Model

(VII.12) Results Obtained by Using Index k* on Iowa Data

(VII.13) Comparison of the Results on Common Test Items for Three Levels of Examinees in
Iowa Study

(VII.14) Remarks on the Usage of Index k*
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VIII New Family of Models for the Multiple-Choice Test Item: II

(VIII.1) Shiba's Word Comprehension Tests

.- (VIII.2) Subjects Used in Shiba's Research

(VIII.3) Methods and Results of Shiba's Research

(VIII.4) Distractors As Resources of Information

(VIII.5) Mathematical Models in Physics and in Psychology

-,. (VIII.6) Normal Ogive Model on the Graded Response Level and Bock's Multinomial Model

(VIII.7) A New Family of Models for the Multiple-Choice Test Items

(VIII.8) Basic Functions and Information Functions of the New Models

(VIII.9) Instructions and Mathematical Models

(VIII.10) A New Approach to Data Analysis

IX Conclusions
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APPENDIX B

Overview of Latent Trait Models: Paper Presented at the Fifteenth Annual Meeting of the Behaviormetric
Society of Japan, in August, 1987, at Kyushu University, Fukuoka, Japan.

Psychology has its own unique problem of measuring hypothetical constructs, such as ability, at-
titude, motivation, personality, and so forth. Since they are hypothesized constructs, there is no way
to measure them directly, and indirect measurement through individuals' responses to more or less
concrete entities, called items, serves an important role. Thus, latent trait models have been developed
for measuring hypothetical constructs, especially in the framework of mental test theory, as well as in
social attitude measurement.

or%

Let 0 be the latent trait, which can be defined either in the unidimensional latent space or in
the multidimensional latent space. Let g denote the item, or the smallest entity, responses to which
enable us to measure the latent trait indirectly. In mental measurement, for example, the latent trait
may be a specified mathematical ability, and an item is a specific question presented in a mathematics
test; in social attitude measurement, the latent trait may be the attitude toward a specific social
issue, and items are questions incorporated in a questionnaire specifically developed for the purpose.
A typical research may start with data collection based upon n items which have been developed
for the purpose of measuring a specific hypothetical construct, or latent trait, and the specification of
individual differences among human subjects with respect to the specified latent trait may be at the
erd of the research.

Unlike many other researchers who work in the area of latent trait theory, or item response theory,
my interest does not stay solely on the dichotomous response level, on which the item score assumes
either 0 or 1 .Years ago, for example, I developed graded response models (Samejima, 1969, 1972),
which deal with discrete item responses having more than two item score categories, i.e., 0, 1, ..., m. ,
for item g . A general latent trait model for the homogeneous case of the continuous response level,
which deals with items having continuous item responses, was also proposed (Samejima, 1973); and
later, the normal ogive model was expanded to fit the multidimensional latent space (Samejima, 1974).

K. A direct expansion of the general model for the continuous item response leads us to the situation in
which the conditional distribution of the item score, given the latent trait 0 , allows to be partly
continuous and partly discrete. This general model is for the unidimensional latent space, and includes
four different situations, i.e., the closed response situation, the closed/open response situation, the
open/closed response situation, and the open response situation.

The operating characteristic of each discrete response, or the operating density characteristic of
each continuous response, plays an important role in latent trait theory. The former is the conditional
probability of the specific discrete response, given the latent trait. If, for instance, each question in
a vocabulary test is scored either correct or incorrect, then the situation belongs to the dichotomous
response level, which is a subcategory of the discrete response level. Thus the binary item score,
ug (= 0, 1) , is assigned to each item response. The item characteristic function P.(0) of a dichotomous
item g is defined as

_(1) Pg(O) = Prob.[u, = i1

i.e., the conditional probability for the correct answer to item g, given ability 0 (cf. Lord and Novick,
1968). Figure 1 illustrates typical monotone increasing item characteristic functions. In this example,
these two dichotomous items follow the normal ogive model, whose item characteristic function can be
written in the form

(2) Pg(0) = (2r)/ - e-ag/2 du

129



with the item discrimination parameter ag (> 0) and item difficulty parameter b. . Note that, in
the limiting situation where a, approaches positive infinity, this item characteristic function tends to
a step function which is illustrated in Figure 1. This degenerated item characteristic function belongs
to the deterministic model known as Guttman Scale, or as biorders.

If each question in a questionnaire is answered by checking one of the four categories, i.e., strongly
disagree, disagree, agree, and strongly agree, as is shown in Figure 2, then the situation belongs to the
graded response level. This is also a subcategory of the discrete response level (cf. Samejima, 1969,
1972). Thus the graded item score, x, (= 01, 1 ... , g) , is assigned to each item response, and in this
specific example m. = 3 . The operating characteristic, P,,(9) , of the graded item score xg is defined
as the conditional probability assigned to xg , given 0 . In the normal ogive model, for example, this
operating characteristic is given by

(3) P.,(0) = (2 -r)-1/2 C0/2 du,

where a, (> 0) is the item discrimation parameter and b.. is the item response difficulty parameter,
which satisfies

(4) - oo = bo < b, < ... < b,,,,- < bra < bn,,+ I = oo.

Figure 3 illustrates a set of operating characteristics in the normal ogive model on the graded response
level with ag= 1.00, b1 =-1.50, b2 = -0.50, b3 = 0.00, b4 = 0.75 and br = 1.25.

An interesting application of the graded response model was made by Roche, Wainer, and Thissen
in the area of medical science (Roche, Wainer, and Thissen, 1975). In their research, they developed a
skeletal maturity scale, using the knee joint as the biological indicator. There are thirty-four indicators,
or items, and tL. -ugh the X-ray films of the subject's knee joint each item was scored by experts into two
to five graded categories. Since the subject's skeletal age does not always coincide with his chronological
age, the skeletal maturity scale based upon latent trait theory is meaningful.

When the item response is continuous, the operating density characteristic of the continuous item
score must be considered. Let z. be the continuous response. Without loss of generality, we can define
z9 as the set of real numbers between zero and unity. In the open response situation, it is assumed
that the conditional probability of z. , given the latent trait 0 , is zero for any value of z. , including
the two endpoints, and the conditional distribution of z9 is given as a continuous distribution. As
an example, let us consider the response format given as Figure 4. If the subject is asked to respond
to a given statement by checking any point in the line segment shown in Figure 4, except for the two
endpoints, then it will be reasonable to assume that the conditional probability of any particular point
in the line segment is zero, for any fixed 6 : thus the open response situation occurs. On the other
hand, if the subject is also allowed to check either one of the endpoints, then it will be unreasonable to
assume that the conditional probabiY'.y of each endpoint , i.e., z. = 0 or zg = 1 , is zero, for people
tend to check either endpoint more often than any other point: thus the closed response situation
occurs, and the conditional distribution of zg , given 0 , is continuous for 0 < zg < 1 , and discrete
at z,=0 and zg-- 1.

We notice that in most experimental situations where response latency is used as a measure of
"quickness" of information processing, and so on, we are forced to terminate the experiment when the

subject's response is too slow. If we consider the response latency as the reversed continuous item score
itself by defining the time set as the time limit as zero and "zero second" as the unity, this will be a
good example of the closed/open response situation. The conditional probability of zg , given 9 , is
zero for any z9 except for z. = 0 . Thus the conditional distribution is continuous for 0 < z9<
and discrete at z. = 0 . In a similar manner, the open/closed response situation is defined as the one
in which the conditional distribution is continuous for 0 < z < 1 and discrete at zg - 1

Let P* (0) be the conditional probability with which the subject obtains the item score zg or
greater, given 9 . A general mathematical form for P*, (0) in the homogeneous case of the continuous

0
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response model is given by! . /,,(9-b., )

(S :(0) 0 41,(t) dt,

;.,. with

(6) Plim P.(0) = 0

4..

where a0, (> 0) is the item discrimination parameter, b,, is the item response difficulty parameter,
and Pg(.) is a specific continuous function, which characterizes the model, and is positive almost
everywhere. If, for example, 1k(t) is given by

(7) 'I(t) = (2n-)-/2e-13/2

then formula (1) will provide us with the normal ogive model, and if it is given by

(8) 1(t) De- Dt[ + a-Dti-2

then the logistic model will be defined.

Some years ago, Birnbaum proposed the logistic model as a good substitute for the normal ogive
model on the dichotomous response level (Birnbaum, 1968) because of the similarity of its item charac-
teristic function to the one in the normal ogive model, and also because of the fact that in the logistic
model there exists a simple sufficient statistic for the response pattern of binary item scores. It is
interesting to note that, as we proceed from the dichotomous response level to the graded response level
and, further, to the continuous level, substantial differences between the two models come up to the
surface.

The operating density characteristic, H,, (0) , has been defined, and it can be written in the form

(9) H.,(O) = a,%P9 {ag(d - b.}}{ b,,} 0 < zg < 1

;Q Let P., (9) be the conditional probability of z. , given 0 . We can write

(10) ]. H.() dz,=1- {Po(0) + P(0)} < 1

where Po(0) and P1 (0) indicate P, (0) for z. =0 and z. 1 respectively. We can also write
for the difficulty parameter

•{lim_ b,, > -oo
a,-0

limnb,= b,!5oo
I % ,-I'

It is noted that in the open response situation, Po(0) = P,(0) = 0 , throughout the whole range of ,
and an equality holds in (10) and in each formula of (11). In each of the three situations, however, the
left hand side of (10) becomes less than unity, and equality does not hold in both formulae of (11).
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Figure 5 illustrates examples of functional relationships between the continuous item score z, and
the difficulty parameter b.g in the closed response situation. The two functional formulae used in those
examples are given in the caption of the figure. In the closed/open response situation, those curves
approach positive infinity as Z0 tends to unity; in the open/closed response situation, they approach
negative infinity as z9 tends to zero; and in the open response situation, both of these asymptotic
characteristics must be true.

p Figure 6 illustrates the operating density characteristic, Hg (0), in the normal ogive model and in
the logistic model for the five selected values of z, in the closed response situation, using the linear
difficulty parameter function illustrated in Figure 5. As you can see in this figure, for each and every
item score 9 for 0 < zg < 1 , the operating density characteristic has a unique local maximum, and
the configurations of those curves in the two separate models are similar.

" So far I have attempted to present a rough outline of latent trait theory, selecting several representa-
tive situations and models, among others. An important basic characteristic of this very comprehensive
theory is that it is a probabilistic model, not a deterministic model. Estimation of the operating char-
acteristics, or of the operating density characteristics, of the item response is, therefore, one of the most
important objectives in the methodology of latent traity theory. There have been many methods and
computer programs developed by researchers in this area. Those methods can be categorized into two
categories, i.e. 1) the parametric method, and 2) the nonparametric method. In the former, we assume
a certain mathematical model for the operating characteristic, and the estimation is reduced to that of
the item parameters. In the latter, we attempt to approach the operating characteristic directly, avoid-
ing assumptions as much as possible. I have developed several methods and approaches in the past eight

4, years, which are categorized into the nonparametric method, in the multiyear research projects sup..
ported by the Office of Naval Research (cf. Samejima, 1981). These methods and approaches, which are
listed below, are basically for the discrete item responses in the unidimensional latent space, although
they can be applied for the continuous item responses.

(1) Approaches
--. (i) Bivariate P.D.F. Approach

(ii) Histogram Ratio Approach
(iii) Curve Fitting Approach
(iv) Conditional P.D.F. Approach

(a) Simple Sum Procedure
(b) Weighted Sum Procedure
(c) Proportioned Sum Procedure

(2) Methods
(i) Pearson System Method

* (ii) Two-Parameter Beta Method
(iii) Normal Approach Method

Out of those combinations of an approach and a method, Simple Sum Procedure of the Conditional
P.D.F. Approach which is combined with the Normal Approach Method has been used most frequently
for analyzing empirical data. We assume that we have a set of n items whose operating characteristics
are known, which is called Old Test following the terminology in mental measurement. For convenience,
let us assume that each item g of the Old Test belongs to the graded response level. Let 1.,(6)
denote the item response information function, which is defined by

892
(12) 1.,(0) Tjlog Pz(9)

The item information function, 1.(9) , is given as the conditional expectation of the item response
information function, given 9 , i.e.,

(13) Ig(e) = ., (e) P.0)

* '=0
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The response pattern, V , of those n items of the Old Test can be written as

(14) V= (X1, z2,... , -,X,. )'

By virtue of the conditional independence of the item score distributions (Lord and Novick, 1968), the
operating characteristic, F. (0) , of the response pattern V is given by

(15) PV(0) [I P.,(e)
z 9 EV

This operating characteristic, Pv(0) , is also the likelihood function, Lv (0) , for estimating the
individual parameter 9. for individual s from his response pattern, when the item parameters are
known. We can write for the response pattern information function, Iv (6)

(16) V I(,) =- -logPVe) = (
z, EV

and the test information function 1(0) is defined as the conditional expectation of the response pattern
information function, given the latent trait 6 . Thus we have

(17) 1(o) = I ,(a)FaV(0) Z,()
V g=1

Figure 5 illustrates the square root of the test information functions of the Level 11 Vocabulary
Subtest of the Iowa Tests of Basic Skills. In order to make the amount of information equal for the
interval of latent trait of interest, 6 is transformed to r by

(18) r= C [(t)1 dt + Co
-cc

where Co is an arbitrary constant for adjusting the origin of r, and C, is another arbitrary constant
which equals the square root of the constant test information function, I*(r) , of r .

Using the symptotic property of the maxumum likelihood estimate, which distributes normally with
the true parameter 6 and the inverse of the square root of the test information as its two parameters,

as an approximation to the conditional distribution of f , given r , we obtain for the two conditional
moments

(19) E~r If) Tlogg*f)

and
(20) Var.(r I f) = C- 2 [1 + C 2 log g*(9)J

.M.

In the Simple Sum Procedure of the Conditional P.D.F. Approach, the estimate of the operating char-
acteristic, Pk4 () , of the discrete item response kk to the "unknown" item h is given by

(21) Pk.(6) = P;,[,(o)] = ( 0()-I ,
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where N is the number of individuals in our sample and $(r f.) is the estimated conditional density of
r , given the maximum likelihood estimate f. of the individual s . In the Normal Approach Method,
this conditional density is approximated by the normal density using the two estimated parameters
derived from (19) and (20) by setting f = f, .

Those methods and approaches for estimating the operating characteristics of discrete item responses
can effectively be applied for the on-line item calibration in computerized adaptive testing. The idea
of adaptive testing is to increase the efficiency of ability estimation, by presenting an optimal subset of
small number of items selected from a large item pool to an individual subject. With the rapid progress
of computer technology, computerized adaptive testing has become more and more popular in the past
decade. In adaptive testing, it is necessary to add new items to the item pool as we continue using
it for years. We can use these nonparametric methods and approaches for the on-line calibration of
new items, if we use and appropriate constant amount of test information to all the individuals as the
criterion for terminating the presentation of items from the "old" item pool. Note that in this example,
Old Test does not consist of a single set of items, and yet the test information of the Old Test is kept
constant, so that we do not need to transform 0 to r , and, as the result, the estimation procedure
becomes much simplified.

As we can see from the above examples of skeletal maturity, reaction time, on-line calibration in
computerized adaptive testing, and so forth, latent trait theory has a very broad area of conceivable

* applications. As a researcher who has been working on latent trait theory and its methodologies for
many years, I wish to see many more applications of the theory in the area of natural sciences, as well
as social sciences, in the future.
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APPENDIX C

Ten Items of the Rorschach Test and Their Scorings for the Purpose

of Measuring the Intellectural Capability Using Appropriate

Latent Trait Models

(1) Failure to Justify in the Abscence of Imaginal Aspects
(Qualities) (f) (0 - 1)

I - [(total number of failures in justifying non-imaginal

responses) / (total number of non-imaginal responses)]

NOTE: When the total number of non-imaginal responses is 4 or
less, we exclude this item for the subject in question.

Example 1.1: Imaginal response.
"It looks like a river way down at the bottom of a

valley."

Example 1.2: Non-imaginal response.
"It looks like a bat."

Example 1.3: Failure in justifying the above non-imaginal

response.
Example 1.2 plus: "It just looks like it."

% Example 1.4: Success in justifying the above non-imaginal
response.
Example 1.2 plus: "Because of the way it's shaped."

Model: Discrete/Continuous Model, Closed Response Situation.

(2) Animal Ratio (ANRA) (0 - 1)

1 - [(total number of animal responses without humans)

/ (total number of responses)]

NOTE: One response can contain 2 or more content scorings.

e.g.; "A man walking a dog." (2 content scorings: H and A)
Because this includes human, it is not considered as an

"animal response", and is counted as 0 in the numerator of

the above ratio.

When the total number of responses is 11 or less, then we
exclude this item for the subject in question.

This rule applies for any item using the total number of

responses in the denominator. In fact, for such a subject
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Rorschach diagnosis is practically impossible.

Approximately 50% of adults' responses are animal respenses.

Example 2.1: Animal response without humans.

"This looks like a bat."
"A dog standing on a river bank."

Model: Discrete/Continuous Model, Closed Response Situation.

A

(3a) Response Complexity (RESCOM) (0 - 1)

(1/8)*[(number of justification types + number of imaginal
aspects) for each response summed over all responses]

/ (total number of responses) if B = 8 or less
1 if B is more than 8

where B denotes the number of elements in a blend for
each response.

NOTE: 1 response can contain up to 13 justification types and
imaginal aspects. Since it is rare to have more than 8
elements in a "blend", and in actual diagnosis clinicians

do not usually make differences between 8 and 13, they are
included in a single item score, 1 .

Hereafter, we use "elements in a blend" for (number of
justification types + number of imaginal aspects). When

abbreviated, justifications (alphabetized) are followed
by imaginal aspects (alphabetized).
e.g.; C.C'.F.HE.HM.V (color, achromatic color, form,

-. human emotion, human movement, vista)

Example 3a.l: F (form) (I element)
"It looks like a landscape, because of the shape."

Example 3a.2: C'.F (2 elements)
(The above plus:) "And the white could be snow."

Example 3a.3: C.C'.F (3 elements)
(The above plus:) "And the red looks like a

t campfire."

Example 3a.4: C.C'.F.V (4 elements)
(The above plus:) "And in the distance a man."

Example 3a.5: C.C'.F.HE.V (5 elements)
(The above plus:) "He looks happy."

Example 3a.6: C.C'.F.HE.HM.V (6 elements)
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(The above plus:) "He is cooking."

Example 3a.7: Ca (arbitrary color) (1 element)

"It's a map, because maps aro always colored."

Example 3a.8: Cp (projected color) (1 element)

(To a non-colored blot:) "It's a blue bird because

it's blue."

Example 3a.9: Sh (shading) (1 element)

K "It's like fog that you can almost see through."

Example 3a.10: T (texture) (1 element)

-"It looks like it would feel soft."

Example 3a.1l: AM (animal movement) (1 element)

"It looks like a dog barking."

Example 3a.12: OM (object movement) (I element)
"It looks like a volcano exploding."

Exaple 3a.13: Ci (inappropriate color) (1 element)

"It looks like a green sheep."

Model: Discrete/Continuous Model, Open/Closed Response Situation.

(3b) Maximum Response Complexity (MRC) (0 - 1)

max{B} / 8 if max(B} = 8 or less
1 if max{B} is more

3than 8

Model: Discrete/Continuous Model, Open/Close Response Situation.

(3c) Proportion of Complex Blends (PCB) (0 - 1)

6 (number of responses with 4 or more elements in a blend)
/ (number of total responses)

NOTE: 3 or less elements in a blend cannot be considered as many,
so we take 4 or more to indicate "many" for each response.

Model: Discrete/Continuous Model, Closed Response Situation.

I'

(4) Corrected Total Number of Responses (CRES) (0 - 1)

(total number of responses) / 50 if R - 50 or less
1 if R is more than 50
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Model: Discrete/Continuous Model, Open/Closed Response Situation.

* .. If the total number of responses are, say, 50 or 99.
the difference is not counted in the diagnosis situation.

(5) Mean Human Articulation (MEHA) (0 - 1)

Take the mean of the distribution of HAI, HA2, HA3 and HA4,
giving 0, 1/3, 2/3 and 1 for the separate scores. There is

some doubt that HA4 is not exactly ordered, but it has been
decided to take the present policy at this stage, and we will

come back to this point later in the analysis.

Example 5.1: HAI. "It looks like a person."

Example 5.2: HA2. "It looks like a big person."

Example 5.3: HA3. "It looks like a big man."

Example 5.4: HA4. "It looks like a policeman."

Model: Discrete/Continuous Model, Closed Response Situation.

(6) Mean Cognitive Complexity (MECOG) (0 - 1)

We have discussed up to the point to decide that the categories
L - should be ordered as: 1) simple, 2) diffuse, 3) articulated +

arbitrary and 4) integrated.

Take the mean of the distribution of the above 4 categories,

giving 0, 1/3, 2/3 and I for the separate scores for the above 4

categories. There is some doubt about this measure, for one of

the clinicians says that she does not take the frequencies of 1)
and 2) into consideration when she diagnoses. We will come back

to this question of the adequacy of this item later in the
analysis.

Example 6.1: Simple cognition.

"It looks like a bat."

Example 6.2: Diffuse cognition.

"It looks like a cloud."

.9. Example 6.3: Articulated cognition.

"It looks like a chair with a back and four legs."

' Example 6.4: Arbitrary cognition.

"It looks like a spider wearing a hair ribbon."
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Example 6.5: Integrated cognition.
"It looks like two people dancing together."

.. S Uodel: Discrete/Ccntinuous, Closed Response Situation.

(7) Proportion of Pure Form Justifications That Are Socially
Appropriate (F+%) (0 - 1)

(number o± F+ justifications) / (total number of F
justifications)

NOTE: Pure form justifications (F) includes both F+ and F-
i.e., pure form justifications that are socially
inappropriate. F is the most common justification, and
approximately 50% of the adult subjects' justifications
belong to this category.

Categorization of F responses into F+ and F- categories is
made following the list in Beck, S. J., et al, 1961.

If the total number of F justifications is 4 or less, the
item is excluded for that subject. Typically, for one
subject there are 10 to 12 F justifications.

Example 7.1: F+ justification.
(To the whole area of the inkblot of card 1 which
really looks like a bird:)
"Bird, because it is shaped like a bird."

Example 7.2: F- justification.
(To the same area indicated above:)
"Worm, because it is shaped like a worm."

' rModel: Discrete/Continuous Model, Closed Response Situation.

(8) Proportion of Whole Responses (W%) (0 - 1)

(number of responses using the whole inkblot)
/ (total number of responses)

NOTE: Approximately 20% of responses are whole responses in the
adult population.

There is some concern that the relationship of this item
with the intellectual capability may not be monotonic. We
will come back to this question later in the analysis.

Model: Discrete/Continuous, Closed Response Situation.
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(9) Integrated White Space (IWS) (0,1,2....)

(number of responses with integrated white space)

NOTE: Usually, black and/or colored parts of the picture (inkblot)
are used as figure against a white ground. But sometimes
white spaces are integrated in the figure.

6 or more such responses are rare, and usually in diagnosis
they are considered in a single category, i.e., "many".

Example 9.1: tface

Oeye

Model: Graded Response Model.

(10) Range of Content (CONTRA) (0,1,2,...,14,many)

(number of different content categories scored)

NOTE: This starts from 1 and goes up to 37. 15 or more are rare.
They may be categorized as "many".

These categories include: 1) animal, 2) special case of
animal (e.g.; dragon). 3) abstraction (e.g.; conflict),
4) animal detail (e.g.; dog's paw), 5) special case of
animal detail (e.g.; phoenix' wing), 6) animal face , 7)
special case of animal face (e.g.; unicorn's face), 8)

anatomy, bony, 9) anatomy, soft (lung), 10) anatomy, sex,
clothing (e.g.; bow tie), 16) cloud, smoke, vapor, 17) death

(e.g.; tombstone), 18) emblems (e.g.; flag), 19) food, 20)
fire (including explosion), 21) geography (e.g.; Italy), 22)
human, 23) special case of human (e.g.; demon), 24) human

detail (excluding human head or face, e.g.; finger), 25)
special case of human detail (e.g.; mermaid's tail), 26)
human face, 27) special case of human face (ghost's face),
28) household (e.g.; drawer cabinet), 29) implements (e.g.;
hammer), 30) landscape, 31) music (e.g.; violin), 32)
religion (e.g.; cross), 33) schemata (e.g.; map), 34)

scientific implements (e.g., microscope), 35) toy (e.g.;
bicycle), 36) travel (e.g., airplane), 37) weapons (e.g.;

missile). (cf. Burstein and Loucks, 1988)

Model: Graded Response Model.

REMARKS: (3a), (3b) and (3c) are included because they are all used in
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actual clinical diagnosis for intellectual ability. In the
process of analysis, however, they may be combined into one
item.

Motivational articulation was also considered as an item, but
excluded later, since we discovered that there is no
systematic tendency to believe that MAI, MA2, MA3 and MA4 are
ordered to reflect intellectual capacity.

(1) Beck, S. J., Beck, A. G., Levitt, E. E. and Molish, H. B.
Rorschach Test, Vol. 1: Basic Process. New York: Grune
and Stratton, 1961.

(2) Burstein, A. G. and Loucks, S. Rorschach's Test: Scoring and
Interpretation. New York: Hemisphere. (To be published in
August, 1988.)
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